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Universelle Strukturen fern des Gleichgewichts in Alpha-Komplexen und
persistenter Homologie

Inspiriert durch Techniken der topologischen Datenanalyse werden Observablen, die
mittels persistenter Homologie konstruiert sind, eingeführt, um Zusammenhangs- und
Clusterstrukturen in Quantenfeldtheorien zu erkennen. Als eine Prototyp-Anwendung
wird das Konzept der Selbstähnlichkeit in der Umgebung von nichtthermischen Fix-
punkten in Quantensystemen fern des Gleichgewichts auf diese Klasse von Observablen
erweitert. Zentrales Ergebnis ist die Beobachtung eines kontinuierlichen Spektrums an
Skalierungsexponenten in klassisch-statistischen Simulationen des zwei-dimensionalen,
nichtrelativistischen Bose-Gases. Eine mögliche Erklärung hierfür stellt die Mischung
dynamischer Komponenten in Punktwolken dar, die teils starker Wellenturbulenz und
teils anomaler Vortex-Kinetik zugeordnet werden können. Skalierungsexponenten ex-
trahiert aus persistenter Homologie sind eng verknüpft mit der Geometrie des physikalis-
chen Systems, wie die Herleitung einer Packungsrelation zwischen selbigen darlegt. Die
im Rahmen dieser Arbeit gewonnenen Ergebnisse zeigen auf, dass persistente Homolo-
gie und mit dieser verwandte Techniken vielseitige und mächtige Methoden sind, um
Quantensysteme über die Sprache von Korrelationsfunktionen hinausgehend zu verste-
hen.

Universal structures far from equilibrium in alpha complexes and persistent
homology

Inspired by topological data analysis techniques, persistent homology observables are
introduced in order to geometrically detect connectivity and clustering structures in
quantum field theories. Serving as a prototype application, the concept of self-similarity
in the vicinity of nonthermal fixed points in far-from-equilibrium quantum systems is
extended to persistent homology observables. Crucially, in classical-statistical simula-
tions of the two-dimensional nonrelativistic Bose gas we discover a continuous scaling
exponent spectrum. A possible explanation is provided in terms of mixing strong wave
turbulence and anomalous vortex kinetics components in point clouds. Persistent ho-
mology scaling exponents are inherently linked to the geometry of the physical system,
as the derivation of a packing relation reveals. The results given in this work demon-
strate that the persistent homology machinery offers powerful and versatile methods to
understand quantum systems beyond the language of correlation functions.
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Chapter 1

Introduction

Since its early days, the extraordinarily powerful machinery of quantum field theory

(QFT) led to exceptionally accurate physical predictions on both tiniest and largest

energy scales amenable to physical experiments. A tremendous range of physical scenar-

ios has been successfully explained using QFT, ranging from high-energy to condensed

matter physics, from thermal equilibrium properties to the vivid dynamics of ultracold

quantum gases or quantum fields in the early universe. Typically, quantum field-theoretic

techniques are applied to observables formulated in the language of correlation functions.

With the work described in this thesis we seek to commence the introduction of a novel

class of observables to QFT, persistent homology observables. As a proof of principle,

we focus on promoting a geometric understanding of dynamical quantum phenomena.

Ubiquitous in nature, comprehending far-from-equilibrium situations and the process

of thermalization has been a topic of intense debate for decades. Focussing on quantum

many-body systems, this field of research recently saw eminent scientific progress [1].

Through complex dynamical collective processes quantum many-body systems generi-

cally display an effective loss of sensitivity to details of initial states [2]. It has been

demonstrated that on their path towards equilibrium these systems can show self-similar

dynamics based on the existence of a nonthermal fixed point [2, 3]. Nonthermal fixed

points represent nonequilibrium attractor solutions with self-similar scaling dynamics

less sensitive to microscopic system parameters and initial conditions.

Owing to their universality, nonthermal fixed points provide a link between vastly

different energy scales and physical systems. Both from a conceptual and a research

perspective fascinating, this opens up the possibility to learn from table-top experiments

with ultracold atoms aspects about the dynamics that the early universe underwent [2].

The scope of corresponding far-from-equilibrium universality classes can be surprisingly

large, covering both relativistic and nonrelativistic scalars in one [4] or, in an expanding

geometry, non-Abelian gauge theories and self-interacting scalar field theories in another

[5, 6]. Important links between nonthermal fixed points and the dynamics of strong and
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2 CHAPTER 1. INTRODUCTION

weak wave turbulence have been established, enhancing the understanding of relevant

collective mechanisms [7–9]. Associated to the transport of conserved quantities such

as energy, systems with a number of conserved quantities can simultaneously realize

multiple nonthermal fixed points in different momentum regimes [4,8, 10]. Focussing for

instance on O(N)-symmetric scalar field theories, both a direct energy cascade towards

the ultraviolet [11] and an inverse particle cascade towards the infrared [4,12] have been

observed in corresponding occupation number spectra.

With recent progress in handling ultracold quantum gases, the experimental study of

emergent universal dynamics in isolated quantum many-body systems became feasible

[13–15]. Key to the extraction of scaling properties of unitary Bose gases in far-from-

equilibrium table-top experiments is that the setups designed over the past years offer

particularly clean settings and can be well isolated from the environment.

Thus far, in far-from-equilibrium studies two-point correlation functions have been of

primary research interest [2,12,16]. In recent years, additionally, there has been a growing

interest in studying fourth- and even higher-order correlation functions in nonequilibrium

situations [15,17–21], encompassing evidence for universal behavior of these. Outpacing

this trend via fully global observables, we extend the notion of universality far from equi-

librium to persistent homology observables in order to provide a prototype application.

Emanating from algebraic topology and Morse theory, the applied mathematics branch

of topological data analysis has gained considerable attention over the past two decades,

accompanied by far-reaching theoretical and computational developments [22, 23]. Us-

ing tools from abstract algebra, algebraic topology offers powerful and versatile meth-

ods to globally study the structure of topological spaces by means of homology groups.

Derived from the latter, quantities such as Betti numbers prominently appear in this

context [24]. Resolving homological structure on different scales, hierarchically, in topo-

logical data analysis an adaptation of the notion of homology called persistent homology

arose [25–27]. Notably, persistent homology makes a multi-scale description of topo-

logical structure contained in point cloud data possible. To accomplish this, simplicial

complexes such as so-called Čech complexes, Vietoris-Rips complexes or alpha complexes,

which are also known as alpha shapes [28,29], are regularly employed.

Besides mathematical investigations, the field of topological data analysis applications

to the natural sciences turned very vivid in recent years. Physical studies include, inter

alia, applications to astrophysics and cosmology [30–33], to physical chemistry [34], to

amorphous materials [35], to quantum algorithms [36–40] and to the theory of quantum

phase space [41]. We will exploit the multi-scale topological information encoded in

a family of alpha complexes and in associated persistent homology groups in order to

rediscover self-similar scaling properties in position space variables.

Serving as a numerical testbed, we apply persistent homology techniques to the dy-
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namics of the single-component nonrelativistic Bose gas in two spatial dimensions, de-

scribed by the time-dependent Gross-Pitaevskii equation. The latter exhibits a rich phe-

nomenology far from equilibrium, including various nonthermal fixed points associated

to the effects of weak, strong and superfluid turbulence [42–44]. Focussing on the non-

perturbative strong wave turbulence regime, a vertex-resummed two particle-irreducible

expansion scheme has been successfully employed to obtain analytical predictions for rel-

evant scaling exponents [4, 45]. The existence of corresponding nonthermal fixed points

has been confirmed by means of numerical lattice simulations [46]. In addition, the

infrared nonthermal fixed point can be dominated by vorticial excitations interacting

anomalously with each other via 3-vortex interactions [46, 47], that is, altering the uni-

versal scaling behavior. It has been conjectured that the anomalous vortex dynamics is

associated to the formation of so-called Onsager vortex clusters out of equilibrium via

evaporative heating [48,49].

In the present work we for the first time apply persistent homology in a quantum

field-theoretic framework, focussing on the regime of validity of the classical-statistical

approximation. Guided by numerical results for the two-dimensional Bose gas, we reveal

that far from equilibrium persistent homology observables can show self-similar scaling

characteristic for observables in the vicinity of a nonthermal fixed point. Astonishingly,

a continuous spectrum of scaling exponents appears, depending on a filtration parameter

to construct point clouds. We conjecture that the existence of such a scaling exponent

spectrum indicates scaling species mixing, in our case between the strong wave turbulence

and the anomalous vortex kinetics nonthermal fixed points present in the infrared of

the particular Bose gas. The analysis is supplemented by a thorough investigation of

accompanying subtleties of the chosen persistent homology approach such as amplitude

redistribution-induced exponent shifts.

On the theoretical side, we define persistent homology observables in the classical-

statistical framework. We introduce the notion of a persistence pair distribution and its

statistical asymptotics in order to infer self-similar behavior of the latter. We reveal that

the appearing scaling exponents probe the geometry at hand, as indicated by a packing

relation derived in this work.

This thesis is structured as follows. Chapter 2 provides in reasonable depth an

introduction to established notions of universal structures which appear in far-from-

equilibrium quantum systems, in particular in the nonrelativistic Bose gas. This includes

a description of the classical-statistical approximation and of the arising topological de-

fect structures.

Focussing on the approach employed in the present work, in Chapter 3 we introduce

point clouds, alpha complexes, persistent homology groups and the persistence diagram.

In addition, we discuss known stability results for the family of persistent homology
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groups and define functional summaries, which describe properties of persistence dia-

grams in a statistically well-behaving fashion and which we later put at the center of our

embedding of persistent homology into the field-theoretic setting.

In Chapter 4 we provide information on how to numerically compute persistent ho-

mology groups, including a description of two example point processes to generate point

clouds, corresponding numerical results and a discussion of the indications of relevant

properties in persistence diagrams and derived quantities.

Then, in Chapter 5 we carry out the construction of persistent homology observables

in the classical-statistical framework. Moreover, we introduce the asymptotic persistence

pair distribution and related geometric quantities, leading to a thorough theoretical in-

vestigation of manifestations of a corresponding self-similar scaling ansatz. In particular,

we derive a packing relation between the occurring scaling exponents both heuristically

and put on mathematical grounds.

With the Bose gas simulations at hand, in Chapter 6 we rediscover self-similarity far

from equilibrium in persistent homology observables. Crucially, this exploration culmi-

nates in the existence of a scaling exponent spectrum. We provide a possible route of

explanation by means of scaling species mixing in point clouds. Additionally, we describe

subtleties of our approach such as amplitude redistribution-induced exponent shifts.

Exceeding these results, in Chapter 7 we preliminarily discuss further persistent ho-

mology approaches such as the construction of point clouds as amplitude interlevel sets

and relative homology groups, tailored to provide further evidence for the scaling species

mixing conjecture.

Finally, in Chapter 8 we summarize, draw conclusions and issue an extensive outlook,

providing proposals for various future research paths possibly worth to follow.



Throughout this thesis we use units in which ~ = c = kB = 1.

If appropriate, in this thesis argumentations are provided in mathematical language.



Chapter 2

Revisiting universal dynamics in

the Bose gas

In recent years, the field of quantum dynamics far from equilibrium saw extensive progress,

both theoretically and experimentally. In this realm, universal phenomena based on the

existence of nonthermal fixed points, conjectured to emerge generically far from equi-

librium and forming a particularly interesting and accessible phenomenon, have gained

considerable attention. For these reasons, as a prototype application of persistent ho-

mology in QFT we consider the nonequilibrium QFT universal behavior.

In Sec. 2.1 we begin with a more general introduction to the notion of universal-

ity far from equilibrium. The nonrelativistic Bose gas serves as our prototype model

for the persistent homology analysis undertaken in later chapters, fundamental physical

phenomena of which we describe hereafter in Sec. 2.2. Often, such phenomena are nu-

merically investigated in the classical-statistical regime as described in Sec. 2.3, allowing

for a classical-statistical treatment. Correlation functions, in particular the occupation

number spectrum, provide clear indications for nonequilibrium phenomena. Finally, in

Sec. 2.4 we discuss known universal results for the infrared and the ultraviolet cascades

which appear in the model’s dynamics.

2.1 Universality far from equilibrium

Focussing on isolated quantum systems, their dynamics is governed by unitary time evo-

lution. Additionally, they offer the possibility to study fundamental aspects of quantum

statistical mechanics, such as nonequilibrium instabilities at early times and late-time

thermalization from first principles.

Thermal equilibrium is characterized by a few conserved quantities only and indepen-

dent of its history in time. Thus, any evolution towards thermal equilibrium that starts,

initially, from a nonequilibrium state, requires an effective loss of details of the initial

6
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Figure 2.1: Schematic evolution towards thermal equilibrium. Reprinted from Ref. [2].

conditions at correspondingly long times. In fact, already at comparably early times an

effective partial memory loss can be observed. An intriguing physical situation occurring

in this context is that of self-similar scaling, which amounts to an enormous reduction

of the sensitivity to details of the underlying theory and initial conditions. Based on

the existence of nonthermal fixed points, the time evolution in a self-similar regime is

described in terms of a few universal scaling exponents and scaling functions, similar in

spirit to the notion of thermal fixed points which describe classes of thermal equilibrium

systems.

Schematically, in Fig. 2.1 generic time evolution situations are displayed. While sys-

tems which, initially, are close to equilibrium directly approach thermal equilibrium in an

approximate sense, far-from-equilibrium quantum systems generically show a universal,

self-similar interlude including a critical slowing-down before thermalizing.

For example, in N -component relativistic scalar field theories both a direct energy

cascade towards the ultraviolet [11] and an inverse cascade in occupation numbers towards

the infrared [4] have been observed. This is indicated schematically in Fig. 2.2, where

a typical distribution function f(t,p) near a nonthermal fixed point is displayed for two

subsequent times t1 < t2. Different momentum regimes are distinguished by means of

their occupancies, f(t,p), in terms of a small parameter λ � 1, which we later identify

to correspond to the interaction strength or ‘diluteness’ of the system. The inverse

cascade associated to particle number transport towards the infrared via strong wave

turbulence occurs in the highly occupied regime, f(t,p) & 1/λ [8,50]. It is accompanied

by Bose condensation far from equilibrium. Simultaneously to particles being transported

to lower momenta, energy is transported in a direct cascade towards higher momenta

via weak wave turbulence, leading to a direct cascade [8]. This occurs in the range

1/λ� f(t,p)� 1. The direct cascade evolves until a high-momentum scale is reached,

where the characteristic mode occupancy becomes of the order of the ‘quantum-half’.
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Figure 2.2: Schematic evolution towards thermal equilibrium. Reprinted from Ref. [4].

Both the inverse and the direct cascade exhibit a self-similarly scaling evolution in

time in corresponding characteristic momentum regimes. To this end, for isotropic sys-

tems the distribution function obeys

f(t,p) = tαfS(ξ ≡ tβ|p|) (2.1)

within a scaling regime. The same such behavior can appear for completely different

initial conditions [51]. It corresponds to a drastic reduction of dynamical degrees of

freedom. In such a scaling form, the scaling exponents α and β, as well as the overall

form of the nonthermal fixed point distribution fS(ξ) are universal, meaning that all

models in the same universality class can be related by a multiplicative rescaling of t and

p. Any system- or initial condition-dependent property of the distribution function is

contained in two nonuniversal amplitudes denoted A and B, which may be defined as

fS(ξ = B) = A,
dfS
dξ

∣∣∣∣
ξ=B

= −2A

B
, (2.2)

such that A characterizes the amplitude of the scaling function at momentum ξ = B, at

which occupation numbers receive dominant contributions.

We can use α/β to learn about which conserved quantity is transported across mo-

mentum scales in the inertial regime in which a certain nonthermal fixed point manifests

itself. From particle number conservation we can, for example, easily deduce α = dβ in
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a d-dimensional system. For this we compute

n =

∫
ddp

(2π)d
f(t,p) = tα−dβ

∫
ddq

(2π)d
fS(|q|). (2.3)

Indeed, requiring that n is time-independent, we find α = dβ. Assuming that the disper-

sion scales with a dynamic exponent z as

ω(p) = s−zω(sp), (2.4)

the energy can be computed as

ε =

∫
ddp

(2π)d
ω(p)f(t,p) = tα−β(d+z)

∫
ddq

(2π)d
ω(q)fS(|q|). (2.5)

Thus, energy conservation, on the other hand, requires α = β(d+ z).

We mentioned already that different cascades and correspondingly different universal

dynamical behavior can appear in different inertial ranges. While particles are trans-

ported towards lower momenta in the infrared, energy is transported towards higher

momenta in the ultraviolet. The corresponding nonthermal fixed points, in whose vicin-

ity the system resides for relatively long times, are different, as indicated by different

scaling exponents α and β as well as a different scaling function, fS(ξ). This includes

the possibility that two models can display the same universal behavior in the infrared,

while having completely different behavior in the ultraviolet. This has been observed for

relativistic and nonrelativistic scalar field theories [4].

2.2 The nonrelativistic Bose gas

The prototype physical model of interest to us is the two-dimensional Bose gas, to which

persistent homology techniques will be applied. Described by the time-dependent Gross-

Pitaevskii equation, it exhibits a rich phenomenology, in thermal equilibrium including a

Berezinskii-Kosterlitz-Thouless transition [52] and the formation of negative-temperature

vortex cluster states [48]. On universal aspects far from equilibrium we will elaborate in

Sec. 2.4 in more detail.

First discussing the Gross-Pitaevskii equation, we deduce from it the corresponding

spectrum of elementary excitations. We find clear evidence for sound waves propagat-

ing through the condensate. Subsequently, we show that vortices exist in two spatial

dimensions and go into detail in their structure. The discussion relies mainly on material

presented in Ref. [53], though adapted for general dimension d, if not specified differently.
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2.2.1 The Gross-Pitaevskii equation

In an ultracold Bose gas, the effective interaction between two particles at low energies

is a constant in their momentum space representation, U0 = 4πa/m, a being the s-wave

scattering length, m specifying the mass. In position space, this corresponds to a contact

interaction U0δ(x − x′), x and x′ being the positions of the two particles. The effective

Hamiltonian for N particles may thus be written as

H =
N∑
i=1

(
p2
i

2m
+ V (xi)

)
+ U0

∑
i<j

δ(xi − xj), (2.6)

the xi specifying positions of the N particles. Here, V (x) is the external potential.

In the fully condensed state all bosons are in the same single-particle state, φ(x),

such that the full wave function of the system reads

Ψ(x1, . . . ,xN ) =

N∏
i=1

φ(xi). (2.7)

Inserting into Eq. (2.6), the energy of this state reads

E[Ψ] = N

∫
ddx

[
1

2m
|∇φ(x)|2 + V (x) |φ(x)|2 +

(N − 1)

2
U0 |φ(x)|4

]
. (2.8)

Introducing the wave function of the condensed state as

ψ(x) =
√
Nφ(x), (2.9)

we find the total number of particles as

N =

∫
ddx |ψ(x)|2 (2.10)

and the energy of the system reads upon neglecting terms of order 1/N

E[ψ] =

∫
ddx

[
1

2m
|∇ψ(x)|2 + V (x) |ψ(x)|2 +

U0

2
|ψ(x)|4

]
. (2.11)

The wave function ψ is subject to an overall constraint in the form of Eq. (2.10). In

looking for the optimal ψ with respect to energy minimization, Lagrange multipliers may

account for this. To this end, the optimal ψ fulfills the equation δE − µ δN = 0, the

chemical potential µ acting as an appropriate Lagrange multiplier here. This is equivalent

to minimizing E−µN at fixed µ. Minimization with respect to ψ∗(x), for example, results
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in [
−∇

2

2m
+ V (x) + U0 |ψ(x)|2

]
ψ(x) = µψ(x). (2.12)

This is the time-independent Gross-Pitaevskii equation, describing the equilibrium struc-

ture of a condensate. The non-linear term U0 |ψ(x)|2 takes into account the mean field

produced by the other bosons.

To render Eq. (2.10) time-dependent, we generalize it by means of replacing the

chemical potential term by a temporal derivative term,[
−∇

2

2m
+ V (x) + U0 |ψ(t,x)|2

]
ψ(t,x) = i∂tψ(t,x). (2.13)

This is the time-dependent Gross-Pitaevskii equation. Under stationarity conditions,

solutions ψ(t,x) evolve in time as exp(−iµt), in accordance with its time-independent

variant [53].

2.2.2 The elementary excitation spectrum

In order to study the excitation spectrum of the time-dependent Gross-Pitaevskii equa-

tion, Eq. (2.13), we linearize it, denoting the change in ψ by δψ. This way we obtain[
−∇

2

2m
+ V (x) + 2U0 |ψ(t,x)|2

]
δψ(t,x) + U0 ψ(t,x)2 δψ∗(t,x) = i∂t δψ(t,x), (2.14)

and[
−∇

2

2m
+ V (x) + 2U0 |ψ(t,x)|2

]
δψ∗(t,x)+U0 ψ

∗(t,x)2 δψ(t,x) = −i∂t δψ∗(t,x). (2.15)

Here, ψ(t,x) is understood to be the condensate wave function in the unperturbed state,

which we may write as ψ(t,x) =
√
n(x) exp(−iµt), n(x) being the equilibrium density

of particles and µ being the chemical potential of the unperturbed system. We look for

solutions to this set of equations which are periodic in time, apart from the overall phase

factor exp(−iµt) present in the unperturbed state. To this end, we look for solutions

δψ(t,x) = e−iµt
(
u(x)e−iωt − v∗(x)eiωt

)
, (2.16)

u and v being functions to be determined. Inserting this ansatz into Eqs. (2.14) and

(2.15), we find the Bogoliubov equations,[
−∇

2

2m
+ V (x) + 2U0n(x)− µ− ω

]
u(x)− U0n(x) v(x) = 0, (2.17)
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and [
−∇

2

2m
+ V (x) + 2U0n(x)− µ+ ω

]
v(x)− U0n(x)u(x) = 0. (2.18)

We apply this formalism to the uniform Bose gas, V (x) = 0. By translational invariance,

solutions are required to be of the form

u(x) = uq
eiqx√
V
, v(x) = vq

eiqx√
V
, (2.19)

V being the system’s volume. The chemical potential of the system being given by U0 n,

we obtain[
q2

2m
+ U0 n− ω

]
uq − U0 n vq = 0,

[
q2

2m
+ U0 n+ ω

]
vq − U0 nuq = 0. (2.20)

These equations only have solutions uq, vq, if the determinant of the matrix of corre-

sponding coefficients has zero-determinant, that is,

(ε0q + U0 n+ ω)(ε0q + U0 n− ω)− U2
0n

2 = 0, (2.21)

with ε0q = q2/2m. From this equation we obtain the dispersion relation

ω(q) =
√
ε0q(ε0q + 2U0 n). (2.22)

This spectrum was first derived by Bogoliubov from a microscopic theory.

In the following brief discussion of this dispersion relation we restrict to the positive

branch of the square root. For small |q|, ω is a linear function in |q|: ω ' s|q| with

s =
√
U0 n/m. In the deep infrared, the spectrum is thus sound-like, with the sound

wave velocity being s. This provides the key to superfluid behavior in ultracold Bose

gases. At short wavelengths, the leading contributions to the spectrum are ω ' ε0q+U0 n,

corresponding to the free-particle spectrum with a mean-field contribution added.

The transition between the linear dispersion and the quadratic one occurs when the

kinetic energy, ε0q, becomes large compared to the potential energy of a particle, U0 n.

This happens at a wave number ∼ √2mnU0, which is the inverse of the coherence

length, ξ. The latter, in addition, is related to the sound velocity via ξ = ms/
√

2. On

length scales longer than ξ, atoms in the Bose gas move collectively, while on shorted

length scales they behave as free particles.

2.2.3 Vortices

The previous derivation of the nature of elementary excitations described by the Gross-

Pitaevskii equation heavily relied upon the linearization process and smallness of corre-
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sponding ‘motions’. However, the time-dependent Gross-Pitaevskii equation has exactly

known analytical solutions also in the non-linear regime, which have the form of soli-

tary waves, solitons in brevity, which are localized disturbances that propagate without

changing their shape. The latter is due to the effects of non-linearity compensating those

of dispersion.

Let us investigate the structure of a single such vortex, following the lines of reasoning

of Ref. [53]. We restrict to the case of two spatial dimensions, d = 2, and assume that

the wave function varies as eilϕ. In polar coordinates we may write

ψ(x) = f(r)eilϕ, (2.23)

f being real. Inserting this ansatz into the time-independent Gross-Pitaevskii equation,

Eq. (2.12), we obtain

− 1

2m

1

r

d

dr

(
r
df

dr

)
+

1

2mr2
l2f + V (r)f + U0f

3 = µf. (2.24)

We consider an infinite medium with a uniform potential taken to be zero, that is,

V (r) = 0. At a large distance from the vortex center at r = 0, the radial derivative term

and the centrifugal barrier term ∝ 1/r2 become subdominant, such that the magnitude

of the condensate wave function becomes f = f0 ≡
√
µ/U0. Close to the center the

derivative and centrifugal terms dominate and the solution scales as r, as it does for a

free particle with unit angular momentum in two dimensions. A crossover distance from

the vortex center between the two behavior regimes exists, which is of the order of the

coherence length in matter, ξ, far from the center,

1

2mξ2
= nU0 = µ, (2.25)

n = f2
0 being the density far from the vortex. We introduce the variables x = r/ξ and

χ = f/f0. To obtain the precise radial shape of the vortex, one may thus solve the

following equation numerically,

− 1

x

d

dx

(
x
dχ

dx

)
+
χ

x2
+ χ3 − χ = 0. (2.26)

The energy content of a single vortex can be approximated by subtracting the energy of

a system without a vortex from the energy of a system with a vortex, both taken within

a circle of radius R� ξ. The resulting estimate for the energy of a vortex reads

Ev ≈ l2π
n

m
ln

(
R

ξ

)
, (2.27)
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which has been confirmed approximately by means of numerical solutions. In particular,

it scales with the square of the winding number l, which indicates that the system will

actually prefer to be in a state with several well-separated vortices with l = 1 instead of

one highly charged vortex. Additionally, we notice that in a vortex the energy is stored

highly nonlocally, spreading throughout the gases’ entire volume.

2.3 Computing nonrelativistic Bose gas dynamics

This section discusses crucial aspects of numerical simulations of the nonrelativistic Bose

gas dynamics. Beginning with an introduction to the most important correlation func-

tion, the distribution function, we move on to introduce an important set of parameters,

in order to conclude this section with discussing the classical-statistical approximation,

making numerical simulations feasible in the first place.

2.3.1 Correlation functions and occupation numbers

Typically, in quantum field theories one is interested in the behavior of correlation func-

tions, most generally of the type

〈O1(x1)O2(x2) · · · On(xn)〉, (2.28)

the Oi being operator-valued distributions, or simply quantum field-theoretical operators,

evaluated in this expression at space-time positions x1, . . . , xn. Given an initial density

matrix %0 and the operators in the Heisenberg picture, the expectation value is computed

as

〈O1(x1)O2(x2) · · · On(xn)〉 := Tr(%0O1(x1)O2(x2) · · · On(xn)). (2.29)

Physically, time-ordered correlation functions are among the most usual ones in corre-

sponding investigations, encoding a tremendous variety of physical quantities.

In this work, we will deviate from this path, studying persistent homology observables

which by construction do not depend on a fixed number of space-time positions. For

comparison reasons, we nevertheless investigate the time-dependent occupation number

spectrum, f(t,p), and its scaling properties. Let ψ be a complex-valued bosonic quantum

field operator. As in Ref. [4] we first define the statistical two-point correlation function

F (t, t′,x− x′) =
1

2
〈ψ(t,x)ψ∗(t′,x′) + ψ(t′,x′)ψ∗(t,x)〉. (2.30)

Generally speaking, the statistical two-point correlation function encodes the occupation

of given quantum states with (quasi-) particles. Subsequently, in d spatial dimensions we



2.3. COMPUTING NONRELATIVISTIC BOSE GAS DYNAMICS 15

define

f(t,p) + (2π)dδ(d)(p) |ψ0|2(t) ≡
∫
ddx e−ipxF (t, t,x). (2.31)

Due to spatial isotropy of expectation values in the system, the distribution function or,

equivalently termed, the occupation number spectrum actually only depends on the mod-

ulus of momenta, f(t, |p|). The term ∝ |ψ0|2(t) represents the condensate contribution

to the spectrum, if present in the system at a given time t.

For completeness, the spectral function is defined in position space as follows,

ρ(x, y) := i〈[ψ(x), ψ∗(y)]〉. (2.32)

Assuming homogeneity and Fourier-transforming this expression, subsequently, yields

ρ̃(p0,p) =

∫
dt ddx eip

0t−ipx ρ((t,x), 0). (2.33)

2.3.2 Parametrical considerations

From the s-wave scattering length, a, of a Bose gas and its density, n, we define a

diluteness parameter [4],

ζ =
√
na3. (2.34)

A characteristic coherence length may be defined inversely via the momentum scale

Q =
√

16πan. (2.35)

The average density, n(t), can be computed from the distribution function, f(|p|), p

being the momentum, via

n(t) =

∫
ddp

(2π)d
f(t, |p|). (2.36)

The average density, n(t) is due to particle number conservation in the nonrelativistic

Bose gas time-independent, n(t) = n.

2.3.3 The classical-statistical approximation

In the large field occupancy limit, the nonequilibrium quantum field dynamics is ac-

curately described by its classical-statistical evolution with Monte Carlo sampling of

quantum initial conditions [54–58],

〈{ψ(x), ψ∗(y)}〉 � 〈[ψ(x), ψ∗(y)]〉, (2.37)

which corresponds indeed to f � 1 for typical momenta and, for the example of a

nonrelativistic Bose gas, to the diluteness parameter ζ being sufficiently small. Classical-
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statistical simulations proceed as follows. One samples initial conditions of the field

degrees of freedom, typically with Gaussian fluctuations implemented. Each such real-

ization is evolved according to the classical equation of motion. Again, for the example

of a nonrelativistic Bose gas this may be the time-dependent Gross-Pitaevskii equation,

Eq. (2.13), treating the wave function as a classical field. Any observable is then com-

puted by averaging over classical field trajectories. In the language of path integrals, this

corresponds for an observable O to

〈O〉cl =

∫
Dψ0Dψ∗0 Dπ0Dπ∗0 W [ψ0, ψ

∗
0, π0, π

∗
0]Ocl[ψ0, ψ

∗
0, π0, π

∗
0], (2.38)

with W [ψ0, ψ
∗
0, π0, π

∗
0] a phase-space density functional, typically being a Gaussian func-

tional in all ψ0, ψ∗0, π0 and π∗0. For initial canonical field variables ψ0 = 〈Ψ|t=0〉, π0, etc.,

the classically-evolved observable reads

Ocl[ψ0, ψ
∗
0, π0, π

∗
0] =

∫
DψDψ∗O[ψ,ψ∗] δ(ψ−ψcl[ψ0, ψ

∗
0, π0, π

∗
0]) δ(ψ∗−ψ∗cl[ψ0, ψ

∗
0, π0, π

∗
0]),

(2.39)

ψcl[ψ0, ψ
∗
0, π0, π

∗
0] indicating the solution to the classical equation of motion of ψ, starting

from (ψ0, ψ
∗
0, π0, π

∗
0), analogously for ψ∗cl.

2.4 Nonthermal fixed points in the two-dimensional Bose

gas

Within various studies the universal behavior in the two-dimensional nonrelativistic Bose

gas and nearby models has been investigated both via analytical and numerical methods.

In this section, we discuss corresponding results of interest in this work, starting with

the infrared regime and moving on to the ultraviolet regime, subsequently. Primarily, we

focus on universal scaling exponents.

2.4.1 The infrared cascade

Our literature discussion begins with the infrared cascade. All of the studies to be

discussed reveal that it is particles being transported to lower and lower momenta that

drives the turbulent cascade in this inertial regime, indicated by the fulfilled relation

α/β = d (2.40)

between scaling exponents α and β as defined in Eq. (2.1), deduced from Eq. (2.3). This

holds generally for any β if particles are transported across momentum scales.

The central analytic result is derived in Ref. [4]. Using a two particle-irreducible (2PI)
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1/N expansion of nonrelativistic scalar field theory in d spatial dimensions, the authors

find that in the overoccupied infrared regime nonrelativistic transport of particles results

in β = 1/2. By a nonequilibrium “anomalous dimension” η, we refer to the spectral

function as given in Eq. (2.33) scaling as

ρ̃(p0,p) = s2−ηρ̃(szp0, sp), (2.41)

s being a real scaling parameter. Here, z describes the scaling of the dispersion, ω(p),

via

ω(p) = s−zω(sp). (2.42)

An anomalous dimensions manifests itself also in scaling exponents, altering β in the

following way [4],

β =
1

2− η . (2.43)

In Ref. [4] Orioli et al. also provide numerical evidence for their analytic considera-

tions in the form of classical-statistical simulation results in the limit of a large charac-

teristic mode occupancy in the relevant inertial regime, that is, f(Q)� 1 with f and Q

as in Sec. 2.3. In particular, simulating the time-dependent Gross-Pitaevskii equation,

Eq. (2.13), they obtain in three spatial dimensions α = 1.66± 0.12 and β = 0.55± 0.03,

rather well confirming β = 1/2 for a vanishing anomalous dimension, η. Indeed, it is

particles being transported towards lower momenta since α/β = 3 is fulfilled to very

good accuracy.

In Ref. [59] these numerical results are confirmed, additionally highlighting the role

of the dispersive scaling exponent, z, for unequal-time correlation functions far from

equilibrium.

While previous numerical results have been obtained for box-initial conditions, the

authors of Ref. [46] follow a different route to prepare initial states in the N = 1, d = 2

Gross-Pitaevskii model. Initial states are generated by phase-imprinting vortex defects

into a fully phase-coherent Bose gas, offering parameters such as the vortex density,

their winding numbers and the distribution statistics to vary initial conditions. Yet,

they emphasize that for the universal scaling behavior far from equilibrium details of

the initial state preparation are irrelevant. In fact, for a uniform random distribution

of elementary defects with winding number w = ±1 the authors find scaling exponents

of α = 1.10 ± 0.08, β = 0.56 ± 0.08, confirming the 2PI 1/N prediction of Ref. [4] for

particle transport. On the other hand, for a slightly displaced regular lattice of non-

elementary defects with winding numbers w = ±6, the authors obtain α = 0.402± 0.05,

β = 0.193±0.05, which is significantly different from the 2PI 1/N result if the anomalous

dimension vanishes. However, if η ≈ −3 in Eq. (2.43), then this result is consistent with

the corresponding derivation, which, nevertheless, has been obtained for the large N -
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limit. A rather heuristic argument in Ref. [46] traces the result of β ≈ 1/5 back to

anomalous vortex kinetics. In addition, there are conjectures across the literature, which

associate this nonthermal fixed point to the formation of Onsager vortex clusters out of

equilibrium via evaporative heating [48,49].

In Ref. [47] Deng et al. study a relativistic single-component interacting scalar field

theory in d = 2 with its infrared dynamics mapped to that of nonrelativistic scalar fields.

Universal scaling of infrared modes, vortex-antivortex superfluid dynamics and the off-

equilibrium formation of a Bose-Einstein condensate are observed. Their exponent of

by value β = 0.24 ± 0.08 confirms the strongly anomalous scaling exponent found in

Ref. [46]. The authors show that in the nonrelativistic field modes vortex structures are

present even for the box-initial conditions investigated in their work.

In the nonperturbative infrared regime, the relevant mechanism for particle trans-

port towards lower momenta has been identified as strong wave-turbulence by Berges

and Sexty in Ref. [8] and as superfluid turbulence by Nowak et al. in Ref. [60] by means

of characteristic power-laws with momentum in the low-momentum regime of the occu-

pation number spectrum.

2.4.2 The ultraviolet cascade

In the ultraviolet regime, there is a consensus across the literature that energy is trans-

ported to higher and higher momenta in the direct cascade, as indicated upon by means

of the relation

α/β = d+ z (2.44)

between scaling exponents α and β as defined in Eq. (2.1), z being the dispersive scaling

exponent as given in Eq. (2.42). This has been deduced in Eq. (2.5) of this work.

Given l-vertex scatterings dominating the dynamics in the ultraviolet and a particle-

like dispersion relation as in Eq. (2.22) for the nonrelativistic Bose gas at large momenta,

ω(p) = p2/2m, the authors of Ref. [4] deduce that nonrelativistic energy transport

analytically yields via perturbative kinetic theory

α = − d+ 2

2(l − 1)
, β = − 1

2(l − 1)
. (2.45)

To the best of our knowledge, to date no numerical study exists, which includes a

thorough analysis of self-similar scaling in the nonrelativistic Bose gas at high momenta

in any number of dimensions.

The mechanism by means of which energy gets redistributed across momentum scales

in the perturbative ultraviolet regime is weak wave-turbulence, as revealed by a Kol-

mogorov power-law exponent in momentum-space occupation numbers [8].



Chapter 3

An invitation to persistent

homology

Aiming for an intuitive, but nonetheless reasonably rigorous treatment, in this chapter we

review relevant notions from algebraic and computational topology, constantly accompa-

nied by examples. We first provide necessary background on simplicial complexes in Sec.

3.1, both in full generality and in the form later employed in this work. We move on by

defining homology groups and their persistent variants in Sec. 3.2. Persistent homology

groups come with an interesting and surprisingly simple classification scheme: barcodes

or, equivalently, persistence diagrams. Under fairly general conditions they are stable

against perturbations of the point clouds from which, initially, simplicial complexes are

constructed, which makes them useful mathematical objects for topological data analysis,

cf. Sec. 3.3. Finally, in Sec. 3.4 we describe the notion of functional summaries, which

are suitable objects to statistically analyze and capture features of persistence diagrams.

For a general introduction to algebraic topology we refer to Ref. [24]; for a thorough

introduction to computational topology the reader may consult Ref. [27], which also

constitutes a major resource for this chapter.

3.1 Complexes

Simplicial complexes play a pivotal role in topological data analysis. This section is

devoted to their introduction — first in full generality, in order to then move on to a

particular type of complex that can be defined from a point cloud: the Delaunay complex.

Key to the computational efficiency of our approach is that simplices in the Delaunay

complex have at most the dimension of the ambient space, in contrast to other types

of simplicial complexes such as the Čech complex [23]. The size of its simplices can be

captured by means of the so-called Delaunay radius function. Its sublevel sets specify a

nested sequence of subcomplexes, the alpha complexes.

19
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Figure 3.1: Examples of low-dimensional simplices.

Let d ∈ N be an arbitrary integer, specifying the dimension of ambient space.

3.1.1 Simplicial complexes

Definition 1. An abstract simplicial complex is a finite collection of sets A such that

α ∈ A and β ⊆ α implies β ∈ A.

The sets in A are its simplices. The dimension of a simplex is dim(α) = |α| − 1 and

the dimension of the complex is the maximum dimension of any of its simplices. A face

of α is a non-empty subset β ⊆ α, which is proper if β 6= α. The vertex set is the union

of all simplices, VertA =
⋃
A. Two abstract simplicial complexes are isomorphic if there

exists a bijection b : VertA→ VertB such that α ∈ A if and only if b(α) ∈ B.

Definition 2. F be a finite collection of sets. Without assuming convexity of the sets,

we define the nerve of F to consist of all non-empty subcollections whose sets have a

non-empty common intersection,

Nrv(F ) =

{
G ⊆ F

∣∣∣∣∣ ⋂
x∈G

x 6= ∅
}
. (3.1)

No matter what sets form the elements of F , Nrv(F ) is always an abstract simplicial

complex. Indeed, if
⋂
H 6= ∅ and G ⊆ H then

⋂
G 6= ∅. We can realize the nerve

geometrically in some Euclidean space. It thus makes sense to talk about its topology

type and its homotopy type.

So far, we did not have to worry about how to embed an abstract simplicial complex

into Euclidean space. The definition of a simplicial complex, however, requires this.

Let p0, p1, . . . , pn be points in Rd. A point x =
∑n

i=0 λipi is an affine combination

of the pi if the λi sum to 1. The affine hull is the set of affine combinations. It is an

n-plane if the n+ 1 points are affinely independent, that is, any two affine combinations

x =
∑
λipi and y =

∑
µipi are the same if and only if λi = µi ∀i. In other words, the

n + 1 points are affinely independent if and only if the n vectors pi − p0, for 1 ≤ i ≤ n,
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are linearly independent.

An affine combination x =
∑
λipi is a convex combination if all λi are non-negative.

The convex hull is the set of convex combinations. An `-simplex is the convex hull of `+1

affinely independent points, σ = conv(pj0 , pj1 , . . . , pj`), ji ∈ {p0, . . . , pn}. Its dimension

reads dimσ = `. A vertex is a 0-simplex, an edge a 1-simplex, a triangle a 2-simplex and

a tetrahedron a 3-simplex, see Fig. 3.1. A face of σ is the convex hull of a non-empty

subset of {pi | i = 0, . . . , n} and it is proper if the subset is not the entire set. We write

τ ≤ σ if τ is a face and τ < σ if it is a proper face of σ. If τ is a (proper) face of σ we

call σ a (proper) coface of τ .

Definition 3. A simplicial complex is a finite collection of simplices K such that σ ∈ K
and τ ≤ σ implies τ ∈ K, and σ, σ0 ∈ K implies σ∩σ0 is either empty of a face of both.

Thus, the key property of a simplicial complex is that it is closed under taking faces.

The dimension of K is the maximum dimension of any of its simplices. The underlying

space, denoted |K|, is the union of its simplices together with the topology inherited

from the ambient Euclidean space in which the simplices live. A subcomplex of K is a

simplicial complex L ⊆ K. A particular subcomplex is the j-skeleton consisting of all

simplices of dimension j or less, K(j) = {σ ∈ K | dimσ ≤ j}. The 0-skeleton is also

referred to as the vertex set.

The orientation of an `-simplex σ = {p0, . . . , p`} is an equivalence class of permuta-

tions of its vertices, (p0, . . . , p`) ∼ (pπ(0), . . . , pπ(`)) if sign(π) = 1. An oriented simplex is

denoted by [σ].

3.1.2 The Delaunay complex

Following Refs. [27, 61], we introduce a particular type of complex, constructed from an

input point cloud X ⊂ Rd, that is, a finite subset of points in Euclidean space: the

Delaunay complex. We first provide a construction as the dual of the Voronoi diagram

and subsequently give a second, equivalent way to construct it.

The Voronoi cell of an arbitrary point pi ∈ X consists of all points in Rd for which

pi is the closest,

Vor(pi) = {x ∈ Rd | ||x− pi|| ≤ ||x− pj || ∀j}. (3.2)

The Voronoi diagram of P is the set of Voronoi cells,

Vor(P ) = {Vor(pi) | 0 ≤ i ≤ n}. (3.3)

Throughout, the Vor(pi) are closed convex polyhedrons. By construction, any two

Voronoi cells have disjoint interiors but they may intersect along shared pieces of their

boundaries. By definition, the Delaunay complex, Del(P ), is dual to the Voronoi diagram:
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Whenever two Voronoi cells share a common side, then the edge connecting the two cor-

responding points belongs to the Delaunay complex. Whenever three Voronoi cells share

a common corner, the triangle spanned by the three corresponding points belongs to the

Delaunay complex. The construction proceeds analogously to tetrahedrons and higher

dimensional simplices. More formally,

Del(P ) = Nrv(Vor(P )) =
{
X ⊆ VorP

∣∣∣⋂X 6= ∅
}
. (3.4)

An important property of a point cloud X is to be in general position, which, for

example, excludes the possibility that three or more points are collinear or that four or

more points lie on a single circle.

Definition 4. We say that a finite subset X ⊂ Rd is in general position, if for every

0 ≤ k ≤ d,

(i) no k + 2 points belong to a common k-plane,

(ii) no k + 3 points belong to a common k-sphere,

(iii) considering the unique k-sphere that passes through k+ 2 points, no k+ 1 of these

points belong to a k-plane that passes through the center of the k-sphere.

The Delaunay complex is a simplicial complex if and only if the Voronoi diagram is

primitive, that is, if the intersection of any 1 ≤ k + 1 ≤ d + 2 Voronoi cells is either

empty or (d−k)-dimensional. Assuming general position of the input point cloud X, the

Voronoi diagram, Vor(X), is primitive, and the Delaunay complex makes up a simplicial

complex, a posteriori justifying its nomenclature.

By construction, every point q ∈ Vor(Y ), Y ⊆ X being the vertex set of a simplex in

Del(X), is equally far away from all points in Y and at least as far away from all points

in X \ Y . We call the sphere with center q and radius ||q − pi||, pi ∈ Y , a circumsphere

because all points of Y lie on the sphere. We additionally call it empty because all points

of X lie on or outside the sphere.

Equivalently to before, the Delaunay complex, Del(X), can be defined as consisting

of all those simplices whose circumspheres are empty [62], assuming general position of

X.

We define a function on Del(P ), the Delaunay radius function Rad : Del(P ) → R,

mapping any simplex to the smallest radius of all its empty circumspheres [61]. The

function Rad is well-defined, since every simplex Y ⊂ X has a unique smallest cir-

cumsphere, namely the unique circumsphere whose center, q lies in the affine hull of

Y = {pj0 , . . . , pjk}. Mathematically speaking, Rad specifies a generalized discrete Morse

function [61,63]. Intuitively, it provides a measure for the size of a simplex.
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Figure 3.2: Left: The Voronoi diagram of the example point cloud consisting of 100
points sampled from a unit circle with Gaussian noise added to their positions. Right:
Its dual, the Delaunay complex. Computations via SciPy and GUDHI.

In Fig. 3.2 the Voronoi diagram and the Delaunay complex of an example point cloud

are displayed, the point cloud consisting of 100 points sampled from a unit circle with

Gaussian noise added to their positions. Note that simplices of different Delaunay radii

are visually of distinct dominance, typically. Smaller simplices appear foremost around

noisy accumulations of points, while simplices of larger radii mainly make up the interior

of the circular structure of the point cloud.

3.1.3 Alpha complexes

Let r > 0. Br(x) ⊂ Rd be the ball with radius r around x ∈ Rd. We define the union of

balls around the point cloud X = {p0, . . . , pn}:

UX(r) =
n⋃
i=0

Br(pi). (3.5)

Alternatively, we may view UX(r) as a sublevel set of the Euclidean distance function

%X : Rd → [0,∞), %X(x) = min0≤i≤n ||x− pi||:

UX(r) = %−1
X ([0, r]). (3.6)

If x ∈ UX(r) belongs to the Voronoi cell Vor(pi), then x ∈ Br(pi). Thus, Vor(pi)∩UX(r) =

Vor(pi) ∩Br(pi) =: Rr(pi), which is convex. Denote

Reg (X, r) :=

n⋃
i=0

Rr(pi). (3.7)

We note that if a collection of sets Rr(pi) has a non-empty common intersection, then

so do the corresponding Voronoi cells. Hence, the nerve of Reg(X, r) is isomorphic to a

subsystem of the nerve of Vor(X). We use the same canonical geometric realization as
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Figure 3.3: Alpha complexes of the example point cloud, with successively increasing
radii from (a) to (d). Light gray: balls of the respective radius around the point cloud.
Dark gray: corresponding alpha complexes. Computations via GUDHI.

for Delaunay complexes and call the result the alpha complex of P , denoting it by αr(X).

Specifically, αr(X) is the realization of the nerve of Reg(X, r) obtained by mapping Rr(pi)

to pi for each i. By construction, the alpha complex is a subcomplex of the Delaunay

complex.

Though uncountably many unions of balls UX(r) exist, only finitely many alpha

complexes exist for a given point cloud X ⊂ Rd. Additionally, for all 0 ≤ r ≤ s we find

αr(X) ⊆ αs(X). To this end, we obtain a filtration of alpha complexes, that is, a nested

sequence,

∅ ⊆ αr1(X) ⊆ · · · ⊆ αrn(X) = Del(X), (3.8)

with ri ≤ rj for all i < j.

As alpha shape we define the union of all simplices in the alpha complex, which is a

notion also regularly appearing in the literature [27–29]. Formally, the underlying space

|αr(X)| is what we consider the alpha shape of X, that is, the set of points contained in

the simplices of αr(X) together with the subset topology inherited from the Euclidean

space.

Again referring to the example point cloud, in Fig. 3.3 corresponding alpha complexes

of different radii are displayed. Note that at intermediate radii the approximately circular

structure is visible, while for small radii the alpha complex mainly reflects noisyness in

the data. At large radii, the full Delaunay complex is recovered. Leading to the notion

of persistent homology, it is a crucial insight that independent cycles such as the circular
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structure in the given data appear in alpha complexes of a certain radius and disappear

again at a higher radius.

3.2 Persistent homology

Given a simplicial complex, we introduce the chain complex and homology groups in

order to move on to relative homology groups and to the additional structure emerging

from filtered simplicial complexes: persistence. Persistent homology groups then provide

multi-scale information on the topological structure of the input data, making them the

fundamental mathematical objects of interest in this work.

In what follows we restrict to the ground field Z2.

3.2.1 Homology groups

We call the free Abelian group on the set of oriented `-simplices of a simplicial complex

K the `-th chain group C`, where [σ] = −[τ ] if σ = τ and σ and τ are oriented differently.

An element c ∈ C` is an `-chain, c =
∑

imi[σi] with σi ∈ K and mi ∈ Z2. In what follows

we omit orientation from notations and assume that all simplices are oriented. Working

with Z2-coefficients, we can think of an `-chain as a set of `-simplices, namely those σi

with mi = 1. We define the boundary operator ∂` : C` → C`−1 to be the linear map

defined by its action on a simplex σ = [p0, . . . , p`] ∈ c,

∂`σ =
∑
j

(−1)j [p0, p1, . . . , p̂j , . . . , p`], (3.9)

p̂j indicating that pj is deleted from the denoted sequence. Intuitively, the boundary

operator maps an `-chain to its boundary, validating its nomenclature. In particular,

since the boundary of a boundary is empty, ∂` ◦ ∂`+1 = 0. The boundary operator

connects the chain groups into an exact sequence, the chain complex C∗,

· · · → C`+1
∂`+1−→ C`

∂`−→ C`−1 → . . . . (3.10)

To this end, the boundary group B` := im(∂`+1) and the cycle group Z` := ker(∂`) are

nested, B` ⊆ Z` ⊆ C`.
The `-th homology group is then defined as

H` := Z`/B`. (3.11)

Its elements are equivalence classes of cycles, c+B` with c ∈ Z`. Two cycles, c, c′ ∈ Z`,
are called homologous, c ∼ c′, if [c] = [c′]. Z` being a group with respect to the addition

of elements, this structure is inherited to H`. Defined over a ring Z, homology groups are
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Z-modules. If defined over a field such as Z2, homology groups become vector spaces.

In any case, we define the `-th Betti number as the rank of the `-th homology group,

β` := dimZ2(H`). (3.12)

Betti numbers count the number of independent `-dimensional cycles (in the sense of not

being homologous). For example, β0 counts the number of connection components of the

topological space minus one (in reduced homology as described below), β1 counts the

number of loops enclosing independent tunnels, β2 counts the number of shells enclosing

separate voids.

If K is to describe a topological space homotopic to a single-point space, then

H0(K) = Z2, while for any i ≥ 1 we find Hi(K) = 0. The idea of reduced homology

groups is to replace H0(K) by a variant H̃0(K) which has dimension zero. To accomplish

this, we define the augmented chain complex

· · · → C`+1
∂`+1−→ C`

∂`−→ C`−1 → . . .
∂1−→ C0

ε−→ Z2 → 0, (3.13)

where

ε

(∑
i

miσi

)
=
∑
i

mi. (3.14)

We define reduced homology groups as

H̃`(K) :=

ker(∂`)/im(∂`+1) for ` ≥ 1,

ker(ε)/im(∂1) for ` = 0.
(3.15)

It is not difficult to show that

H0(K) = H̃0(K)⊕ Z2, H`(K) = H̃`(K) ∀k ≥ 1. (3.16)

Indeed, defining reduced Betti numbers as the dimension of reduced homology groups,

β̃` := dimZ2(H̃`(K)), we find that β̃0 counts the number of connection components of

K minus one. All higher-order Betti numbers remain unchanged from the reduction

process. In everything that follows we work solely in reduced homology, omitting it from

notations for this reason.

As an example of a topologically nontrivial space consider the two-dimensional torus

as displayed in Fig. 3.4. We find that the three cycles a, b and c cannot be continuously

deformed into each other. Notably, cycles a and b cannot be shrunk to a point. For

c, however, this is the case, making it homologous to zero. In reduced homology, the



3.2. PERSISTENT HOMOLOGY 27

Figure 3.4: Cycles on a 2-torus. Reprinted from Wikipedia.

homology groups of the 2-torus read

H0(T 2) = 0, H1(T 2) = Z2 ⊕ Z2, H2(T 2) = Z2. (3.17)

Intuitively, this resembles the fact that it is made up from a single connection component,

that the two independent 1-cycles a and b are present and that T 2 encloses a single void.

From its homology groups we can also read off, that a and b represent the only two

independent 1-dimensional homology classes. Any other 1-cycle is homologous to either

zero, a or b.

Let f : K → L be a map between simplicial complexes which is a simplicial map,

that is, f(σ) is a simplex in L for all σ ∈ K. A simplicial map induces a linear map from

the chains of K to the chains of the same dimension of L: if c =
∑
miσi is an `-chain

in K, then f#(c) :=
∑
miτi with τi = f(σi) if it has dimension ` and τi = 0 if f(σi) has

dimension less than `. In particular, we find that f#◦∂K = ∂L◦f# with ∂K and ∂L being

the boundary maps of the two complexes, respectively. f# thus takes cycles to cycles,

f#(Z`(K)) ⊆ f#(Z`(L)), and boundaries to boundaries, f#(B`(K)) ⊆ f#(B`(L)). For

this reason it induces a homomorphism on homology groups, f∗ : H`(K) → H`(L). We

will regularly make use of this, in particular with inclusion maps between complexes.

3.2.2 Relative homology groups

We extend homology beyond single simplicial complexes by considering nested pairs of

such and studying their difference.

Let A ⊆ K be a simplicial subcomplex of a simplicial complex K. Then we find for

`-th chain groups, C`(A) ⊆ C`(K), ι labeling the corresponding inclusion map. Being

vector spaces, this makes C`(K,A) := C`(X)/C`(A) a well-defined vector space. In

addition, we obtain ∂K ◦ ι = ι ◦ ∂A. Thus, the boundary map on C∗(K) leaves C∗(A)

invariant and therefore descends to a map ∂ on the quotient C∗(K,A), ∂` : C`(K,A)→
C`−1(K,A). By construction, we obtain ∂`−1 ◦ ∂` = 0. To this end, as before we can
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Figure 3.5: An illustration of the definitions of birth and death of homology classes.
Picture inspired by Ref. [27].

define relative homology groups of (K,A),

H`(K,A) :=
ker(∂` : C`(K,A)→ C`−1(K,A))

im(∂`+1 : C`+1(K,A)→ C`(K,A))
. (3.18)

Relative homology classes are represented by relative cycles, that is, chains whose bound-

aries are chains on A: c ∈ C`(K) such that ∂c ∈ C`−1(A) [64].

3.2.3 Persistent homology groups

Additional structure arises, if one considers homology groups of a filtered simplicial com-

plex. To this end, we consider the alpha complexes constructed in Sec. 3.1.3, defining

αi := αri(X), X ⊂ Rd being a point cloud. We recall that αi ⊂ αj and find an inclusion

map ιi,j : αi → αj for all i ≤ j, resulting in a filtration of the Delaunay complex, Del(X).

For all i ≤ j, the inclusion map ιi,j : αi → αj induces a homomorphism between

homology groups, ιi,j` : H`(αi) → H`(αj), for each dimension ` = 0, . . . , d. To this end,

the filtration of alpha complexes yields a sequence of homology groups,

0→ H`(α1)→ · · · → H`(αn) = H`(Del(X)). (3.19)

Within this sequence, homology classes are born and later die again, when they become

trivial or merge with other classes. With this intuition in mind, we define `-th persistent

homology groups as follows,

H i,j
` := im(ιi,j` ), ∀ 0 ≤ i ≤ j ≤ n. (3.20)

The `-th persistent Betti numbers are defined as

βi,j` = dim(H i,j
` ), (3.21)

counting the number of homology classes that are born at or before ri and die after rj .
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Figure 3.6: The persistence diagram of 1-dimensional persistent homology classes of the
example point cloud, Dgm1(X). The highlighted homology class reflects the dominant
circular structure present in the example point cloud. Computations via GUDHI.

To make the notions of birth and death of a simplex rigorous, let γ ∈ H`(αi). We

say that γ is born at αi if γ /∈ H`(αi−1). If γ is born at αi, then it dies entering αj , if

it merges with an older class as going from αj−1 to αj , that is, ιi,j−1
` (γ) /∈ H i−1,j−1

` , but

ιi,j` (γ) ∈ H i−1,j
` . The persistence of γ is defined as pers(γ) := rj − ri, if γ is born at αi

and dies entering αj . For an illustration of this definition we refer to Fig. 3.5.

Let µi,j` be the number of `-dimensional classes born at αi and dying entering αj . We

define the persistence diagram, Dgm`(X), to consist of all (ri, rj) ∈ R2
+ corresponding

to `-dimensional persistent homology classes, taking respective multiplicities µi,j` into

account. Throughout this work, zero-persistence homology classes are not taken into

account.

We find an interesting identity including the µi,j` and the Betti numbers, namely

µi,j` = (βi,j−1
` − βi,j` )− (βi−1,j−1

` − βi−1,j
` ), (3.22)

for all i < j and all `. The first term on the right hand side of this equation counts those

classes that are born at or before αi and die entering αj , while the second term counts

those classes that are born at or before αi−1 and die entering αj . It follows that for every

pair of indices 0 ≤ i, j ≤ n and every dimension `, the `-th persistent Betti number can

be computed via

βi,j` =
∑
p≤i

∑
q>j

µp,q` . (3.23)

This important property, intuitively, describes that persistence diagrams encode the en-

tire information about persistent homology groups up to isomorphism.

Returning to the example point cloud, in Fig. 3.6 we display its persistence diagram of
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one-dimensional homology classes. At its bottom an accumulation of persistent homology

classes occurs, which are born at small radii and rapidly die again. These classes may

be interpreted as reflecting the noise in the data. Take note of the persistence pair at

the top with comparably high persistence. The corresponding persistent homology class

represents the overall circular structure of the point cloud. This way, persistent homology

provides us with a multi-scale topological summary of point cloud data.

Actually, the intuitive definition of the birth and death of homology classes provided

above has a conceptual drawback [23]. Any two homology classes that are born at the

same birth radius rb, one of them merging with the other one at a radius r > rb, only die

jointly at the death radius of the resulting homology class with highest death radius. A

circumvention of this is provided by what is called the structure theorem of persistence

modules [25,26]. It states that up to isomorphism the familyM` := ((H`(αi))i, (ι
i,j
` )i≤j)

can be described by its persistence diagram. Thus, the latter forms a complete invariant

of the persistence module M`.

3.3 The stability of persistence diagrams

Given a point cloud X, it is a natural question to ask for the stability of the persistence

diagram of the filtration of alpha complexes of X against perturbations of the latter.

This is precisely what persistence theorems accomplish, making persistent homology a

useful notion in the analysis of potentially noisy data.

In this section we describe two of the first such stability results, for two different

types of metrics on persistence diagrams: the Bottleneck and the Wasserstein distance.

Actually, both do not describe persistence diagrams of alpha complexes but, instead,

those of the filtration of sublevel sets of functions with preimage a triangulable topological

space.

Throughout this section, a persistence diagram can be regarded as a multiset of points

in the plane R̄2 = ([0,∞)∪{∞})2, all laying above the diagonal. We may add arbitrarily

many points with zero persistence on the diagonal in order to simplify definitions. Again,

we work with homology groups having Z2-coefficients.

3.3.1 Bottleneck distance stability

Let X,Y be two persistence diagrams and η : X → Y a bijection between them, possibly

adding points to the diagonal to be able to define a bijection. Measuring the distance

between two points x = (x1, x2) and y = (y1, y2) as ||x− y||∞ = max{|x1− y1|, |x2− y2|}
and taking the infimum over all bijections, we define the bottleneck distance between X

and Y as

W∞(X,Y ) = inf
η:X→Y

sup
x∈X
||x− η(x)||∞. (3.24)
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Indeed, with W∞(X,Y ) = 0 if and only if X = Y , W∞(X,Y ) = W∞(Y,X) and

W (X,Z) ≤ W∞(X,Y ) +W∞(Y, Z) we find that W∞ is a metric on the space of persis-

tence diagrams.

We note that homology groups can be defined not only from simplicial complexes,

but also from any topological space, for example via singular homology. For details on

this we refer to Refs. [24, 64].

Definition 5. Let T be a topological space and f a real function on T . A homological

critical value of f is a real number a for which there exists an integer ` such that for all

sufficiently small ε > 0 the map H`(f
−1(−∞, a − ε]) → H`(f

−1(−∞, a + ε]) induced by

inclusion is not an isomorphism.

Definition 6. A function f : T → R is tame if it has a finite number of homological

critical values and the homology groups H`(f
−1(−∞, a]) are finite-dimensional for all

` ∈ N and a ∈ R.

Let f : T → R be such a tame function and set Xa := f−1((−∞, a]). Noting that

Xa ⊆ Xb whenever a ≤ b, we obtain the filtration of sublevel sets. To this end, for any

a ≤ b there exists a map ιa,b` : H`(Xa) → H`(Xb) induced by the inclusion. Similarly to

before, we say that a class α ∈ H`(Xa) is born at Xa if α /∈ im(ιa−δ,a` ) for any δ > 0,

setting b(α) = a. A class α born at Xa dies entering Xb if ιa,b−δ` (α) /∈ im(ιa−δ,b−δ` )

for all δ > 0 but ιa,b` (α) ∈ im(ιa−δ,b` ), setting d(α) = b. We define its persistence as

pers(α) = d(α) − b(α). By Dgm`(f) we denote the corresponding persistence diagram,

consisting of all points (b(α), d(α)) for `-dimensional persistent homology classes α.

We recall that a topological space is triangulable if there is a (finite) simplicial complex

with homeomorphic underlying space.

Following Ref. [65], the Bottleneck stability theorem finally reads as follows.

Theorem 1 (Bottleneck stability theorem). Let T be a triangulable space with continuous

tame functions f, g : T → R. Then, the persistence diagrams satisfy for all ` ∈ N

W∞(Dgm`(f),Dgm`(g)) ≤ ||f − g||∞ = sup
x
|f(x)− g(x)|. (3.25)

To this extend, under mild assumptions on the function, the persistence diagram is

stable. Small changes in the function imply only small changes in the diagram. The

proof of the theorem proceeds via diagram chasing and an intermediate upper bound on

the Hausdorff distance between the persistence diagrams.

3.3.2 Wasserstein distance stability

The Wasserstein stability theorem we deduce in somewhat more detail than the Bottle-

neck stability theorem, since we will use intermediate and final results in later deductions.
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Derivations proceed along the lines of Ref. [66]. We begin by stating preliminary techni-

calities.

Let X be a triangulable, compact n-dimensional metric space, d : X × X → R
its metric. As stated previously, a triangulation of X is a finite simplicial complex K

with homeomorphism ϑ : |K| → X. We define the diameter of a simplex σ ∈ K as

diam(σ) := maxx,y∈σ d(ϑ(x), ϑ(y)) and the mesh of a triangulation K as mesh(K) :=

maxσ∈K diam(σ). For all 0 ≤ ` ≤ n we denote the `-skeleton of K by K(`). We are

interested in the smallest triangulation with mesh at most r,

N(r) := min
mesh(K)≤r

card(K), N`(r) := min
mesh(K)≤r

(card(K(`))− card(K`−1)). (3.26)

As an example consider X a compact Riemannian manifold. Then, for sufficiently small

r there exist c, C > 0, such that c/rn ≤ N(r) ≤ C/rn.

Additionally, for any subset z ⊆ X, we define

zr := {x ∈ X | ∃ y ∈ z : d(x, y) ≤ r}. (3.27)

A series of lemmas brings us to the main results.

Lemma 1 (Snapping Lemma). Let K be a triangulation of a compact metric space X

with mesh(K) = r. Then for each cycle z of dimension ` in X there is a cycle z̄ in the

`-skeleton of K that is homologous to z inside zr.

A crucial ingredient of Wasserstein stability is the involved functions being Lipschitz.

A function f : X → R is Lipschitz on X, if there exists a positive constant c, such that

|f(x) − f(y)| ≤ c d(x, y) for any x, y ∈ X. The infimum of such c is called Lipschitz

constant and denoted by Lip(f).

A useful lemma follows, including persistent homology notions.

Lemma 2 (Persistent Cycle Lemma). Let X be a triangulable, compact metric space,

f : X → R a tame Lipschitz function. Then the number of points in the persistence

diagrams of f whose persistence exceeds ε is at most N(ε/Lip(f)).

We define the degree-k total persistence,

Persk(f, t) :=
∑

pers(x)>t

pers(x)k, Persk(f) := Persk(f, 0). (3.28)

Lemma 3 (Moment Lemma). Let X be a triangulable, compact metric space, f : X → R
a tame Lipschitz function. Then,

Persk(f, t) ≤ tkN
(

t

Lip(f)

)
+ k

∫ Amp(f)

ε=t
N

(
ε

Lip(f)

)
εk−1 dε, (3.29)
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setting Amp(f) = maxx∈X f(x)−miny∈X f(y).

The first term on the right-hand side of Eq. (3.29) is denoted by A, the second by B.

We define the notion of polynomial growth and bounded total persistence as follows.

Assume that the size of the smallest triangulation grows polynomially with one over the

mesh, that is, there exist C0,M > 0, such that N(r) ≤ C0/r
M for all r > 0. Let δ > 0

and k = M + δ. We then find upper bounds for A and B:

A ≤ C0Lip(f)MAmp(f)δ, B ≤ C0Lip(f)MAmp(f)δ
M + δ

δ
, (3.30)

which motivates the introduction of the following concept.

Definition 7. A metric space X implies bounded degree-k total persistence, if there

exists a constant CX > 0 depending only on X, such that Persk(f) ≤ CX for every tame

function f : X → R with Lip(f) ≤ 1.

As an example consider X = Sn. One finds a C0 > 0, such that N(r) ≤ C0/r
n. Thus,

a C > 0 exists with Persk(f) ≤ C for some C and every k = n+ δ, δ > 0.

Let f, g : X → R be two tame functions with persistence diagrams Dgm`(f) and

Dgm`(g), respectively, ` ∈ N. The degree-p Wasserstein distance between the persistence

diagrams of f and g is defined as

Wp(f, g) =

[∑
`

inf
γ`

∑
x

||x− γ`(x)||p∞

]1/p

, (3.31)

where the first sum runs of all dimensions `, the infimum is taken over all bijections

γ` : Dgm`(f)→ Dgm`(g), adding zero-persistence points to render this well-defined, and

the second sum runs over all x ∈ Dgm`(f).

Theorem 2 (Wasserstein Stability Theorem). Let X be a triangulable, compact metric

space that implies bounded degree-k total persistence for k ≥ 1, and let f, g : X → R be

two tame Lipschitz functions. Then,

Wp(f, g) ≤ C1/p
k · ||f − g||1−k/p∞ (3.32)

for all p ≥ k and Ck = CX max{Lip(f)k,Lip(g)k}.
Another result follows quickly.

Theorem 3 (Total Persistence Stability Theorem). Let X be a triangulable, compact

metric space that implices bounded degree-k total persistence for k ≥ 0, and let f, g :

X → R be two tame Lipschitz functions. Then,

|Persp(f)− Persp(g)| ≤ 4pwp−1−k Ck · ||f − g||∞, (3.33)
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for every real p ≥ k + 1, Ck := CX max{Lip(f)k,Lip(g)k} and w is bounded from above

by max{Amp(f),Amp(g)}.
As the notation suggests, the Bottleneck distance, W∞, arises indeed as the limit of

the Wasserstein distance, Wp, for p→∞ [27]. To this end, under the assumptions of the

Wasserstein stability theorem the Bottleneck stability theorem follows.

In Sec. 5.6 we will deduce from the Wasserstein stability theorem and intermediate

notions such as bounded total persistence for the sequence of alpha complexes a bound

on the number of persistent homology classes of a given size.

3.4 Statistics via functional summaries

Persistence diagrams do not naturally lead themselves to statistical goals, because their

complicated structure makes common algebraic operations such as addition, division and

multiplication challenging. To bypass these issues, functional summaries of persistence

diagrams have been proposed in the literature [67,68].

Let D be the space of persistence diagrams, that is, the space of finite multisets of

points within R̄2. Let F be a collection of functions, f : Ω → R for all f ∈ F , Ω being

a compact space. A functional summary is in full generality any map from the space

of persistence diagrams to a collection of functions, F : D → F . In this work, F is

the space of distributions on Ω = [0, c] for some c > 0, the space of simple functions on

Ω = [0, c], or, trivially, R.

By means of a functional summary F , random diagrams D1, . . . , Dn become random

functions, Fi := F (Di), i = 1, . . . , n. If these random diagrams are sampled from a

single distribution, then the corresponding functional summaries also origin from a single

distribution (of functions), PF .

The population mean functional summary is a function

F̄ (s) = E[Fi(s)] ∀ s ∈ Ω, (3.34)

the expectation being with respect to PF . The sample estimator may be the pointwise

estimator

F̂n(s) =
1

n

n∑
i=1

Fi(s) ∀ s ∈ Ω. (3.35)

Let BF be the set of functions formed by a given functional summary. Let T be a

compact set, such that we are interested in the population mean functional summary

F̄ (s) within s ∈ T . For every F ∈ BF we define F (s) = 0 for all s /∈ T . Throughout this

manuscript, functional summaries shall be uniformly bounded from above by a constant

U <∞, that is,

sup
F∈BF

sup
s∈T
|F (s)| ≤ U. (3.36)



3.4. STATISTICS VIA FUNCTIONAL SUMMARIES 35

In Ref. [68] the following proposition on pointwise convergence of the estimator F̂n

towards F̄ has been proven.

Proposition 1 (Pointwise Convergence). Let F be a uniformly bounded functional sum-

mary. If BF is equicontinuous, then

sup
s∈T
|F̂n(s)− F̄ (s)| a.s.−→ 0. (3.37)

As a special case consider only L-Lipschitz functions constituting BF . Then the

assumptions of this proposition are fulfilled and pointwise convergence follows.

Furthermore, a whole variety of statistically useful properties of functional summaries

has been derived in Ref. [68] including, inter alia, a central limit theorem, statements

about confidence bands and statistical tests.

Examples for functional summaries include, for example, persistence landscapes as

introduced in Ref. [67], which are an equivalent description to barcodes and persistence

diagrams, containing all their information.



Chapter 4

Persistent homology on a

computer

This chapter serves as an introduction to numerically computing persistent homology

properties on a computer. We first describe the basic algorithm based on matrix reduc-

tion in Sec. 4.1, more sophisticated variants of which are used throughout numerical

libraries. Subsequently, the henceforth employed numerical implementation is illustrated

and discussed in Sec. 4.2, followed by example results for both the Poisson point process

and the Soneira-Peebles model. Both of these point cloud generation processes will be

described in sufficient detail in Secs. 4.3 and 4.4.

4.1 Algorithmic basics

In this section we describe the basic, efficient algorithm to compute persistent homology

on a computer, following the lines of Ref. [27]. It basically is a variant of matrix reduction.

We restrict our discussion to alpha complexes of a point cloud X ⊂ Rd. Let Rad :

Del(X) → [0,∞) be the Delaunay radius function, having the property that Rad(σi) ≤
Rad(σj) if σi is a face of σj .

We use a compatible ordering of the simplices in Del(X), that is, a sequence σ1, . . . , σm

such that Rad(σi) ≤ Rad(σj) implies i ≤ j and so does σi being a face of σj . Such an

ordering exists because Rad is monotonic. It is important to note that every initial

subsequence of simplices forms a subcomplex of Del(X). The sequence of simplices is

used to set up the boundary matrix, ∂, storing the simplices of all dimensions in one

object with the (i, j)-th entry defined as

∂[i, j] :=

1 if σi is a co-dimension one face of σj ,

0 else.
(4.1)

36
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Intuitively, rows and columns of this matrix are ordered like the simplices in the total

ordering and the boundary of a simplex is stored in its column.

Column operations are employed by the matrix reduction algorithm in order to reduce

∂ to another matrix R, which, similarly, contains only zeros and ones. Let low(j) be the

row index of the lowest one in column j. If the entire column is zero, then low(j) is

undefined. R is called reduced, if low(j) 6= low(j0) for all j 6= j0 specifying two non-zero

columns. The algorithm proceeds by adding columns from left to right, in order to reduce

the matrix ∂.

R = ∂ ;

f o r j = 1 to m do

whi le the re e x i s t s j0 < j with low(j0) = low(j) do

add column j0 to column j

endwhi le

endfor .

Worst, the running time is cubic in the number of simplices present in Del(X). To

obtain the ranks of homology groups of Del(X), let #Zerop(R) be the number of zero-

columns corresponding to p-simplices and #Lowp(R) the number of lowest ones in rows

that correspond to p-simplices. Then, βp = #Zerop(R)−#Lowp(R).

In addition, we can retrieve information on persistent homology groups of the alpha

complexes of X from R. We first note that even though R is not unique the lowest ones

are unique in the following sense. Define

rR(i, j) = rank(Rji )− rank(Rji+1) + rank(Rj−1
i+1 )− rank(Rj−1

i ), (4.2)

wherein Rji is the lower-left submatrix of R whose corner element is R[i, j]. Note that

rank(Rji ) = rank(∂ji ). If R[i, j] is a lowest one, then rR(i, j) = 1. If R[i, j] is not a lowest

one, then rR(i, j) = 0 as deduced in Ref. [27]. Since the ranks of the submatrices of R

are the same as those of ∂, rR is a characterization of the lowest ones which does not

depend on the reduction process. To this end, the lowest ones of R are unique. On top,

i = low(j) if and only if r∂(i, j) = 1.

The previous discussion revealed that the lowest ones are not an artifact of the proto-

col employed for reduction. We can assert a clear meaning to them and begin by noting

that column j reaches its final form at the end of the j-th iteration of the outer loop in

the previously mentioned algorithm. Then, the reduced matrix for the complex consists

of the first j simplices in the total ordering. Two cases are to be distinguished: the case

with column j ending up zero and the case in which it has a lowest one. Let us assume

that column j of R is zero. Then we may call σj positive, since its addition creates a new

cycle, giving birth to a new homology class. Assuming that column j of R is non-zero,
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we find that it stores the boundary of the chain accumulated in column j of matrix V ,

thus being a cycle. We call σj negative, because its addition results in the death of the

homology class represented by column j. Following an argument given again in Ref. [27],

it is born at the time the simplex of its lowest one, which is σi with i = low(j), is added.

Summarizing, we find that (ai, aj) is a finite point in Dgmp(Rad) if and only if

i = low(j) and σi is a simplex of dimension p. Then, σj is of dimension p + 1. We find

(ai,∞) ∈ Dgmp(Rad) if and only if column i is zero but row i does not contain a lowest

one. To this end, the reduced matrix R can be used to compute persistent homology

groups.

In practical applications, boundary matrices may become very large. To this end,

efficient algorithmic representations of sparse boundary matrices are necessary and im-

plemented in optimized algorithms and libraries such as GUDHI [23,27,69].

4.2 Numerical implementation

A variety of software exists designed to provide user-friendly and fast routines for the

generation of simplicial complexes and the computation of persistent homology [23].

We employ the GUDHI library, which is a generic open source C++ library tailored

to TDA and higher dimensional geometry understanding [69]. In particular, with the

simplex tree structure [70] it offers a handy data structure to store simplicial complexes.

GUDHI employs the extensive CGAL library [71] to compute alpha complexes and uses

a sophisticated variant of the algorithm described in Sec. 4.1 to compute persistent

homology groups.

Given a point cloud X, our routine to compute homology groups of the full filtration

of alpha complexes of X proceeds as follows.

1. Compute the alpha complexes, stored as the Delaunay complex of X together with

the radii of the simplices and additional information among them.

2. Initialize the filtration of alpha complexes.

3. Compute the persistence diagram of the filtration.

4. Compute various persistent homology descriptors such as Betti numbers.

To give a rough indication of the speed of this routine, on a standard laptop alpha

complexes of point clouds with approximately 100,000 data points can be analyzed in

a few minutes, including the computation of persistent homology groups of all dimen-

sions. For an overview of the computational cost of different TDA implementations across

software solutions we refer to Ref. [23].
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4.3 Benchmarking via the Poisson point process

Figure 4.1: Alpha complexes of increasing radii from left to right, computed from a point
cloud generated according to the Poisson point process with density ρ = 0.05 within a
square of site-length 250 in arbitrary units. Analysis carried out using GUDHI.

As a first test of the aforementioned numerical implementation to compute persis-

tent homology groups, we investigate the Poisson point process and corresponding alpha

complexes. A finite point set P ⊂ Rd sampled from a Poisson point process with density

ρ > 0 can be characterized by the following two properties:

1. the numbers of points sampled within a finite collection of pairwise disjoint Borel

sets are independent random variables,

2. the expected number of points sampled within a Borel set B ⊂ Rd is ρ times the

Lebesgue measure of the set, E[|P ∩B|] = ρ||B||.

The two conditions imply that the number of points sampled in a Borel set B has a

Poisson distribution with parameter ρ||B||. In particular, the probability of having no

point in B is P[P ∩ B = ∅] = exp(−ρ||B||). P being sampled from a Poisson point

process, it is with probability 1 in general position [61].

In Fig. 4.1 we display alpha complexes of different radii computed for an example

point cloud generated from the Poisson point process. One may notice that all simplices

are visually randomly distributed, in addition to holes present in the complex. The

corresponding persistence diagram and Betti number distributions are displayed in Fig.

4.2. Comparing with numerical experiments carried out for Poisson point process samples

in Ref. [72], we find qualitative agreement between our results and their.

4.4 Fractality in the Soneira-Peebles model

Another interesting point cloud generation process is provided by the Soneira-Peebles

model, originally introduced in Ref. [73] in order to simulate galaxy distributions and

mimic the occurring random fractality.
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Figure 4.2: Left: Persistence diagram of one-dimensional homology classes computed
from the sequence of alpha complexes of the example point cloud as in Fig. 4.1. Right:
The corresponding Betti number distributions in dimensions zero and one. Analysis
carried out using GUDHI.

Point clouds are inductively constructed in the Soneira-Peebles model. Specify a

number γ of clusters. For each cluster, at a random position specify a unit sphere. These

we call level-0 spheres. In each such sphere, randomly place a number ψ of spheres, each

having a radius 1/ζ. These spheres we call level-1 spheres. Inductively, in any level-n

sphere place ψ spheres of radius 1/ψn+1, forming level n + 1. This procedure is carried

out until a given level η is reached.

Figure 4.3: An example point cloud generated according to the Soneira-Peebles model
with γ = 20 clusters and parameters η = 4, ζ = 5 and ψ = 5.

In Fig. 4.3 we display an example point cloud generated according to the Soneira-

Peebles model. Notice that already at the level of the single point cloud a clear indication
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Figure 4.4: Left: Persistence diagram of one-dimensional homology classes computed
from the sequence of alpha complexes of the example point cloud as in Fig. 4.3. Right:
The same persistence diagram displayed in different coordinates. Analysis carried out
using GUDHI.

of random fractality is visible. Zooming-in, we see that the point cloud structurally looks

similar on comparably small length scales as compared to larger scales. Persistent homol-

ogy as displayed in Fig. 4.4 clearly unveils this fractality. Multiple populations of persis-

tent homology classes on different are visible length scales, in particular in (rbrd, rd/rb)-

coordinates. By construction, on smaller scales there are more homology classes present

than at larger length scales. Via the parameter ζ one can separate individual levels in

the model further, providing a higher distinguishability of the populations on different

length scales and controlling the random fractality in the model.

Figure 4.5: Betti numbers computed from the sequence of alpha complexes of the example
point cloud as in Fig. 4.3. Analysis carried out using GUDHI.
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As expected, corresponding Betti numbers as displayed in Fig. 4.5 reflect this effect,

too. The Betti number distribution of zero-dimensional homology classes is already for

the point cloud displayed in Fig. 4.3 quite smooth, displaying kink-like behavior between

the occurring populations periodic in the radius r. The statistics of one-dimensional

homology classes is worse, resulting in comparably large fluctuations. However, a clear

pattern of peaks is visible, which reflect the model’s fractality.



Chapter 5

Persistent homology observables

In this chapter we define a novel class of quantum field-theoretical observables, which

for obvious reasons we call persistent homology observables. We focus on the classical-

statistical approximation. To this end, we embed alpha complexes and their persis-

tent homology into the classical-statistical approximation, in order to provide us with a

quantitative means of connectivity and clustering structures beyond n-point correlation

functions.

First, in Sec. 5.1 we describe a way of generating point clouds from individual field

configurations in order to, subsequently, construct persistent homology observables by

means of functional summaries, cf. Sec. 5.2. An interesting quantity to arise in a certain

class of functional summaries is that of the asymptotic persistence pair distribution as

defined in Sec. 5.3. We describe the prototype application of interest to us in Sec. 5.4:

self-similar scaling as a manifestation of universality far from equilibrium, previously de-

scribed in Chap. 2. A section on the lattice framework and its implications for persistent

homology observables follows, cf. Sec. 5.5. Finally, we show that in the scaling ansatz to

the asymptotic persistence pair distribution the occurring scaling exponents are linked

to each other via a relation that stems from packing homology classes of finite size into

a compact volume, cf. Sec. 5.6.

5.1 Point clouds in the classical-statistical framework via

filtration functions

In the classical-statistical approximation we are given an ensemble of classical field config-

urations, each evolved in time according to the classical equation of motion as described

in Sec. 2.3.3. An immense freedom of choice exists in constructing point clouds from

individual field configurations, suitably by means of sub- or interlevel sets of a filtration

function, that is, a map from a field configuration to R. In this work, point clouds are

generated as sublevel sets of the field amplitude on a finite spatial lattice Λ. Through

43
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this, the lattice is crucial, rendering point clouds finite. For all filtration parameters,

ν ∈ R+ = [0,∞), we define

Xν(t) := |ψ(t, ·)|−1[0, ν] = {x ∈ Λ | |ψ(t,x)| ≤ ν}, (5.1)

ψ : R×Λ→ C being a single field configuration as it appears, for example, in simulations

of the nonrelativistic Bose gas, cf. Sec. 2.2.

Note that in the given approach, point clouds are constructed at each instance of

time, t, individually. They do not incorporate field configurations at multiple instances

of time, simultaneously. We want to emphasize, that this is nothing fundamental to the

construction of persistent homology observables as carried out here. Various different

paths to construct point clouds are amenable and the one presented is not the most

general one. It is a mere choice that we make, providing a solid means of comparison

with known results for example for occupation number spectra.

Simulating on a spatial square lattice with constant lattice spacing, we want to stress

that to obtain point clouds by means of Eq. (5.1), to compute alpha complexes and to

evaluate persistent homology groups only the finiteness of the lattice is crucial. Else,

Xν(t) might consist of infinitely many points. The construction of persistent homology

groups is robust against perturbations of the lattice points due to stability theorems,

cf. Sec. 3.3. This implies, that if points in Xν(t) are altered slightly, then persistence

diagrams of the sequence of alpha complexes of Xν(t) change only slightly, too. This

renders the microscopic form of the lattice irrelevant for later numerical persistent ho-

mology results. The constant lattice spacing and finite lattice volume solely amount to

a smallest and a largest length scale amenable to the investigated real-time dynamics.

5.2 Observables via functional summaries

Inspired by Ref. [68], an important notion to play a role in this work is that of a functional

summary, which is in full generality any map from the space of persistence diagrams to

a collection of functions with domain Ω, F : D → F , as described in Sec. 3.4.

As described in Sec. 2.3.3, in the classical-statistical approximation expectation val-

ues of quantum observables are computed as ensemble-averages of an observable’s values

computed from individual classical field configurations. We propose to proceed analo-

gously for functional summaries of persistence diagrams computed from the sequence of

alpha complexes of point clouds generated from individual field configurations. To this

end, any functional summary may be evaluated on the level of individual field configu-

rations and its expectation value computed as the ensemble-average. We assume that

the range of validity of this approach coincides with the well-known classical-statistical

regime. To motivate this, we infer the existence of a corresponding quantum operator F ,
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such that in the classical-statistical approximation for all s ∈ Ω,

〈F(Λ; ν, p)(s)〉 =

∫
Dψ0Dψ∗0 Dπ0Dπ∗0 W [ψ0, ψ

∗
0, π0, π

∗
0]F (Dgmp(|ψcl(t, ·)|−1[0, ν]))(s),

(5.2)

where Λ specifies the employed spatial lattice and we use notation of Secs. 2.3.3 and

3.4. Nevertheless, we want to stress that the existence of such an operator is a priori not

clear.

Key reason for dealing with functional summaries instead of persistence diagrams

directly is that no unambiguous notion of the average of persistence diagrams exists

[74]. This, however, would be a crucial ingredient of an evaluation scheme for persistent

homology quantities in the classical-statistical approximation and, possibly, even in the

context of general path-integral expressions.

In light of this, we need to assure that in the limit of averaging infinitely many indi-

vidual functional summaries of field configurations the statistical mean of the functional

summary is recovered. This is guaranteed for by Prop. 1 on the pointwise convergence

of equicontinuous and uniformly bounded functional summaries, given in Sec. 3.4 of this

work. For the sake of this statement we restrict our proposal to functional summaries of

persistence diagrams with these two fairly general conditions and only consider functional

summaries fulfilling these. Moreover, for such functional summaries a strong law of large

numbers and a central limit theorem have been established [68].

In the classical-statistical framework, by means of the described evaluation scheme

for expectation values of functional summaries in QFT, we refer to them as persistent

homology observables.

5.3 The asymptotic persistence pair distribution

In this section we introduce the notion of a persistence pair distribution and its asymp-

totics, which we later use to introduce self-similarity of persistence diagrams.

Let F : D → F be a functional summary in the above sense. We say that F is

additive, if F (D+E) = F (D) +F (E) for any two persistence diagrams D,E ∈ D . Here,

D+E denotes the sum of multisets, that is, the union of D and E with multiplicities of

elements in both D and E added.

Let D ∈ D be a persistence diagram and F an additive functional summary. We then

find for all s ∈ Ω,

F (D)(s) =
∑

(rb,rd)∈D

F ({(rb, rd)})(s)

=

∫ ∞
0

dr′b

∫ ∞
0

dr′d F ({(r′b, r′d)})(s)P(r′b, r
′
d), (5.3)
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with the persistence pair distribution

P(r′b, r
′
d) :=

∑
(rb,rd)∈D

δ(r′b − rb) δ(r′d − rd), (5.4)

δ denoting the Dirac delta function.

Let (Di)i∈N ⊂ D be an ensemble of persistence diagrams describing p-dimensional

persistent homology classes. We denote the persistence pair distribution of Di by Pi.
We define the asymptotic persistence pair distribution implicitly, requiring that for any

functional summary F ,∫ ∞
0

dr′b

∫ ∞
0

dr′d F ({(r′b, r′d)})(s) P̄(r′b, r
′
d)

:= lim
n→∞

1

n

n∑
i=1

∫ ∞
0

dr′b

∫ ∞
0

dr′d F ({(r′b, r′d)})(s)Pi(r′b, r′d), ∀ s ∈ Ω. (5.5)

Functional summaries of relevance in this work include the distribution of birth and

death radii. Both can be computed as marginal distributions of P̄, respectively,

B̄(rb) :=

∫ ∞
0

drd P̄(rb, rd), (5.6a)

D̄(rd) :=

∫ ∞
0

drb P̄(rb, rd). (5.6b)

In addition, we define the persistence distribution, that is, the distribution of rd − rb, as

Π̄(r) :=

∫ ∞
0

drd P̄(rd − r, rd). (5.7)

If P̄(rb, rd) is the asymptotic persistence pair distribution of `-dimensional homology

classes, then the distribution of `-th Betti numbers can be defined as

β̄`(r) :=

∫ r

0
drb

∫ ∞
r

drd P̄(rb, rd). (5.8)

A priori, the sets of functions B̄(rb), of D̄(rd), of Π̄(r) and of β̄`(r) are not equicontinuous.

For all σ > 0, define a Gaussian mollifier ζσ : R→ R+,

ζσ(s) :=
1√

2πσ2
e−s

2/2σ2
. (5.9)

By convolution with a mollifier such as ζσ, the set of functions such as, for instance, β̄`(r)

can be rendered equicontinuous. Indeed, for any σ > 0 a constant Cσ > 0 exists, such
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that for all possible functions β̄`(r),

d

dr
(β̄` ∗ ζσ)(r) = (β̄` ∗ ζ ′σ)(r) < Cσ, (5.10)

the prime indicating taking the first derivative. Here we also employed that in the lattice

framework all functions such as β̄`(r) are uniformly bounded. In everything that follows

we omit the convolution procedure in notations. Since numerically irrelevant, in the

computations carried out in Sec. 6 no convolution procedure is applied and convergence

of persistent homology observables is numerically verified, cf. Appendix A.

The average number of persistent homology classes is encoded in P̄,

n =

∫ ∞
0

drb

∫ ∞
0

drd P̄(rb, rd). (5.11)

Various length scales may be constructed from P̄. Let q > 0. We define the notion of an

average degree-q persistence length,

Lq :=

[
1

n

∫ ∞
0

drb

∫ ∞
0

drd (rd − rb)q P̄(rb, rd)

]1/q

. (5.12)

Another interesting length scale is the average maximum death radius, r̄d,max. Follow-

ing Eq. (5.53), which we will deduce later, it can be computed from the asymptotic

persistence pair distribution via

r̄d,max = lim
q→∞

(∫ ∞
0

drb

∫ ∞
0

drd r
q
d P̄(rb, rd)

)1/q

. (5.13)

Analogously, the average maximum birth radius, r̄b,max, can be defined.

These distributions and length scales all constitute additive functional summaries

fulfilling the two aforementioned conditions for pointwise convergence. We thus consider

them as valid persistent homology observables.

5.4 Self-similar scaling

As a prototype application, in this section we describe a self-similar scaling ansatz to the

asymptotic persistence pair distribution. In Chap. 6 we will provide numerical evidence

for that universal dynamics in persistent homology observables occurs and can actually

be described by such a scaling ansatz.

We first describe the basic scaling approach, in order to move on by means of a

heuristic argument for a packing relation among the occurring scaling exponents, which,

in a later section, will be proven more rigorously under physically reasonable assumptions.

We conclude this section with a discussion on why persistent homology scaling exponents
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may reflect the self-similar scaling visible in correlation functions and vice versa.

5.4.1 The scaling ansatz

Let P̄(t, rb, rd) be a time-dependent asymptotic persistence pair distribution. We say

that P̄(t, rb, rd) scales self-similarly, if exponents η1, η
′
1 and η2 exist, such that for all

times t, t′,

P̄
(
t, rb, rd

)
= (t/t′)−η2 P̄

(
t′, (t/t′)−η1rb, (t/t

′)−η
′
1rd
)
. (5.14)

Reflecting continuous “fractality”, by the geometric meaning of self-similarity we would

expect that η1 = η′1, such that birth and death radii blow up or shrink equally upon

time-evolution. In Chap. 6 we will find numerical evidence for this.

By the time-dependence of P̄ derived geometric quantities become time-dependent,

too. This we denote explicitly from now on. We find the following scaling behavior of

birth and death radii distributions,

B̄(t, rb) = (t/t′)η
′
1−η2B̄(t′, (t/t′)−η1rb), (5.15a)

D̄(t, rd) = (t/t′)η1−η2D̄(t′, (t/t′)−η
′
1rd). (5.15b)

Assuming η1 = η′1, the persistence distribution scales as

Π̄(t, r) = (t/t′)η1−η2Π̄(t′, (t/t′)−η1r). (5.16)

The total number of persistence pairs scales as follows,

n(t) = (t/t′)η1+η′1−η2n(t′). (5.17)

Assuming η1 = η′1, for all q > 0 the average degree-q persistence length scales as

Lq(t) = (t/t′)η1Lq(t
′). (5.18)

Following Prop. 8 as given below and assuming that η1 = η′1, the average maximum

death radius scales as

r̄d,max(t) = (t/t′)η1 r̄d,max(t′). (5.19)

Though not explicitly given here, the average maximum birth radius scales the same way.

This provides evidence for the geometric intuition of persistence length scales blowing

up or shrinking in the course of time upon self-similar scaling, inferring the existence of

a self-similarly scaling asymptotic persistence pair distribution.

Provided that η1 = η′1, the `-th Betti numbers scale as

β`(t, r) = (t/t′)2η1−η2β`(t
′, (t/t′)−η1r). (5.20)
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5.4.2 A heuristic packing relation

We assume that η1 = η′1 in the given scaling ansatz. A heuristic argument can be given

for that one can expect the relation η2 = (2 + d)η1 to hold, given that corresponding

point clouds are restricted to a constant volume V . Intuitively, the argument encodes

that only a finite number of persistent homology classes of a given size can be packed

into V .

Let q > 0 and the point clouds be dominated by a time-dependent degree-q persistence

length scale, Lq(t). The d-dimensional volume V in which the point clouds reside is kept

constant. Heuristically, a number nd(t) of d-dimensional persistent homology classes with

persistence length scale Lq(t) fits into V , scaling as

nd(t) ∼
V

Lq(t)d
, (5.21)

since the volume that each d-dimensional persistent homology class occupies generically

may scale as ∼ Lq(t)
d. In the self-similar scaling ansatz, inserting Eq. (5.18) into Eq.

(5.21) we find

nd(t) ∼ t−dη1 . (5.22)

On the other hand, from Eq. (5.17) we obtain

nd(t) ∼ t2η1−η2 . (5.23)

Hence,

η2 = (2 + d)η1. (5.24)

This relation shows that persistent homology observables represent in a direct fashion

the ambient space geometry. For correlation functions, contrastingly, similar relations

are deduced from conserved quantities, such as α/β = d derived from the total number

of quasi-particles in scalar theories being conserved, cf. Eq. (2.3).

Of course, the assignment of occupied volumes to d-dimensional homology classes is

highly heuristic, bearing in mind that a homology class is an equivalence class of many

cycles within a simplicial complex, rendering any such mapping ambiguous. However,

one may use the Wasserstein stability theorem of persistence diagrams and elements of

its proof [66] in order to deduce Eq. (5.24) more rigorously from physically reasonable

assumptions. The corresponding slightly lengthy derivation is carried out in the following

sections.
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5.4.3 Relating persistent homology exponents to correlation function

exponents

Typically, nonthermal fixed points and their properties are discussed in the framework

of n-point correlation functions, both theoretically and experimentally [2,4,13,14,17,59].

The universal self-similar scaling behavior at nonthermal fixed points allows for a group-

ing of far-from-equilibrium quantum systems into universality classes. Universality classes

cover broad classes of far-from-equilibrium initial conditions, large ranges of relevant pa-

rameters and even theories with very different degrees of freedom [4]. Being a natural

surrounding for universality, properties of nonthermal fixed points including scaling ex-

ponents have been derived within the renormalization group [75,76]. To this end, length

scales derived from scaling correlation functions are expected to blow up or to shrink

with a unique power-law in time.

If the asymptotic persistence pair distribution shows self-similar scaling as in Eq.

(5.14), then any length scale derived from it scales in time as a power-law with exponent

η1, assuming η1 = η′1. As an example consider the degree-q persistence length, defined

in Eq. (5.12) and showing scaling as in Eq. (5.18). In light of this geometric analogy

and the universality of scaling exponents at nonthermal fixed points, we expect that self-

similar scaling behavior as extracted from correlation functions can typically be observed

also in persistent homology observables. In Chap. 6 we will provide strong numerical

evidence for this, in addition demonstrating that novel information can be deduced from

persistent homology observables.

5.5 Lattice framework and ergodicity

With mathematical rigor we describe the lattice framework and certain properties of

functional summaries for later usage. To this end, the reader may forgive us the reintro-

duction of for example the asymptotic persistence pair distribution in the course of this

section. All of the occurring definitions originate from our own imagination.

We define the lattice framework such that point clouds are subsets of a d-dimensional

uniform spatial lattice with periodic boundary conditions,

ΛL := {a(m1, . . . ,md) | mi ∈ {0, . . . , N − 1} ∀ i} ⊂M, (5.25)

with a := L/N , lattice volume vol(ΛL) = Ld and a number Nd of lattice sites. M is

chosen to be the d-torus, M = T d, constructed from a d-hypercube [0, L]d, L > 0, by

means of periodic boundary conditions. Birth and death radii of persistent homology

classes are assumed to be small compared to L, such that constants c, C > 0 exist with

c/rd ≤ N(r) ≤ C/rd. Here, N(r) is defined to be the smallest triangulation with mesh
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at most r as in Eq. (3.26). Points of a point cloud that lie not in general position are

assumed to be slightly perturbed, in order to render Del(X) a simplicial complex.

Definition 8. Given the lattice framework, we say that a nested family of point clouds

(XL)L>0, XL ⊆ ΛL and XL ⊆ XL′ for each L′ > L > 0, distributes homogeneously, if for

each ε > 0 and γ ∈ [0, 1] there exists an Lε,γ > 0, such that for all L ≥ Lε,γ :∣∣∣∣card(XL ∩ (a+R[0, γL]d))

card(XL)
− γd

∣∣∣∣ < ε, (5.26)

holds for arbitrary a ∈ [0, L]d, R ∈ SO(d) with

a+R[0, γL]d := {a+Rx |x ∈ [0, γL]d}, (5.27)

taking periodic boundary conditions into account in order to make sense of this expression

on the lattice ΛL.

Example. Two counterexamples can provide intuition for Definition 8.

(i) For all L > 0, define XL := {0} (0 ∈ Λl for all L > 0). This clearly violates the

conditions of Definition 8. Point clouds that distribute homogeneously continuously

occupy more and more points in a lattice of growing size.

(ii) Let d = 1 and define XL := {n2 |n ∈ N} ∩ [0, L] for all L > 0. The points do not

distribute homogeneously, since

card(XL ∩ [0, L/2]) = b
√
L/2c, (5.28a)

card(XL ∩ [L/2, L]) = b
√
Lc − b

√
L/2c. (5.28b)

Let X ⊂ Rd be a point cloud. The persistence diagram of the filtration of alpha

complexes of X is denoted in this section by Dgm
(α)
` (X), ` = 0, . . . , d and is defined,

again, as the multiset of all birth-death pairs of `-dimensional persistent homology classes

along the filtration of alpha complexes.

Analogously to the homogeneous distribution of point clouds, we define the property

of homogeneous distribution for persistence diagrams computed from a family of point

clouds on the lattice.

Definition 9. Given the lattice framework, let (XL)L>0 be a nested family of point

clouds, XL ⊆ ΛL and XL ⊆ XL′ for each L′ > L > 0. Define DL :=
⋃d
`=0 Dgm

(α)
` (XL)

for all L > 0. We say that the family (DL)L distributes homogeneously, if for all γ ∈ [0, 1]

and ε > 0 there exists Lγ,ε > 0, such that for all L ≥ Lγ,ε, a ∈ [0, L]d and R ∈ SO(d),∣∣∣∣n(XL ∩ (a+R[0, γL]d))

n(XL)
− γd

∣∣∣∣ < ε. (5.29)
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Proposition 2. Given the lattice framework, let (XL)L>0 be a nested family of point

clouds that distributes homogeneously. Asymptotically, we assume that

card(Del(X)) = O(card(X)) (5.30)

for all X := XL′ ∩ (a + R[0, L]d) with a ∈ [0, L′]d, R ∈ SO(d), L′ > L > 0. Then,

(
⋃d
`=0 Dgm

(α)
` (XL))L distributes homogeneously.

Proof. Let L′ > L > 0 be sufficiently large in all that follows and a ∈ [0, L′]d, R ∈ SO(d).

We assume the setting of the Proposition and note that the overall number of persistent

homology classes of a point cloud XL′,L := XL′ ∩ (a+ R[0, L]d), n(X), is bounded from

above by the dimension of the chain complex interpreted as a Z2-vector space,

n(XL′,L) ≤
d∑
`=0

dimZ2(C`(Del(XL′,L)))

= card(Del(XL′,L)). (5.31)

From card(Del(XL′,L)) = O(card(XL′,L)) it follows that n(XL′,L) = O(card(XL′,L)).

On the other hand, since for the number of zero-dimensional persistent homology classes

n0(XL′,L) = card(XL′,L) holds, we obtain card(XL′,L) ≤ n(XL′,L). To sum up, a constant

C ′ ≥ 1 exists, such that

card(XL′,L) ≤ n(XL′,L) ≤ C ′ card(XL′,L). (5.32)

We assume that a 0 < q < 1 and a C̃ > 0 exists, such that n(X) ≤ C̃card(XL′,L)q. Then,

using Eq. (5.32) we obtain

card(XL′,L)1−q ≤ C̃. (5.33)

However, as we let L,L′ → ∞ with L′/L kept constant: card(XL′,L) → ∞, such that

the left-hand side of Eq. (5.33) blows up, resulting in a contradiction. Hence, a constant

c > 0 exists, such that

lim
L,L′→∞,
L′/L=const

n(XL′,L)

c card(XL′,L)
= 1. (5.34)

By the homogeneous distribution of point clouds, we obtain for sufficiently large L′ > L > 0,

card(XL′,L) = (L/L′)d card(XL′,L′), (5.35)

such that
n(XL′,L)

n(XL′,L′)
=

(
L

L′

)d n(XL′,L)

c card(XL′,L)

c card(XL′,L′)

n(XL′,L′)
. (5.36)
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Letting L,L′ →∞ with L′/L kept constant, we find

lim
L,L′→∞,
L′/L=const

n(XL′,L)

n(XL′,L′)
=

(
L

L′

)d
. (5.37)

This concludes the proof.

Remark. Although not proven rigorously for point clouds that distribute homogeneously

in the above sense, across the literature the property that card(Del(X)) = O(card(X))

has been shown explicitly for different types of point clouds sampled from different spaces

[77–81], motivating its usage here. Corresponding point cloud generation processes, for

which this property has been shown, are similar in spirit to the homogeneous distribution

defined here. A rigorous derivation might be feasible.

A key role in what follows is played, again, by functional summaries as defined in

Ref. [68].

Definition 10. Given the lattice framework, we call a functional summary F : D → F

intensive, if for any nested family of point clouds (XL)L>0 (XL ⊆ XL′ ⊆ ΛL′ for all

L′ ≥ L > 0) which distributes homogeneously, with DL :=
⋃d
`=0 Dgm

(α)
` (XL), any ε > 0

and any L > 0 sufficiently large:

sup
s∈Ω

∣∣∣∣ lim
L′→∞

F (DL′)(s)− F (DL)(s)

∣∣∣∣ < ε. (5.38)

We denote the set of intensive functional summaries from D to F by I .

The reader may recall that we say that a functional summary F is additive, if F (D+

E) = F (D) + F (E) for any two persistence diagrams D,E ∈ D . Addition of persistence

diagrams such as D+E is defined by means of the sum of multisets, that is, the union of

D and E with multiplicities of elements in both D and E added. The space of additive

functional summaries from D to F is denoted by A .

Proposition 3. Given the lattice framework, let (XL)L>0 be a nested family of point

clouds, distributed homogeneously with XL ⊆ ΛL for each L. Assume furthermore, that

card(Del(X)) = O(card(X)) for all X := XL′∩(a+R[0, L]d) with a ∈ [0, L′]d, R ∈ SO(d),

L′ > L > 0 sufficiently large. Let A ∈ A be an additive functional summary. Then,

A/vol(ΛL), is almost surely an intensive functional summary for each L, if evaluated on

persistence diagrams of point clouds XL ⊆ ΛL.

Proof. For all L > 0 we denote DL :=
⋃d
`=0 Dgm

(α)
` (XL). Let L,L′ > 0. We proceed by
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estimating, letting s ∈ Ω,∣∣∣∣ 1

vol(ΛL′)
A(D′L)(s)− 1

vol(ΛL)
A(DL)(s)

∣∣∣∣
=

1

vol(ΛL)

∣∣∣∣( vol(ΛL)

vol(ΛL′)
− n(XL)

n(XL′)

)
A(DL′)(s)−

(
1− n(XL)

n(XL′)

A(DL′)(s)

A(DL)(s)

)
A(DL)(s)

∣∣∣∣
≤ 1

vol(ΛL)

∣∣∣∣ vol(ΛL)

vol(ΛL′)
− n(XL)

n(XL′)

∣∣∣∣ |A(DL′)(s)|+ n(XL)

vol(ΛL)

∣∣∣∣A(DL)(s)

n(XL)
− A(DL′)(s)

n(XL′)

∣∣∣∣ .
(5.39)

Since in our setting every functional summary is uniformly bounded, a constant U <∞
exists, such that for any persistence diagram DL,

sup
s∈Ω
|A(DL)(s)| < U. (5.40)

Let ε > 0. Using Prop. 2, we find that (DL)L distributes homogeneously. To this end, if

L,L′ are chosen sufficiently large, then∣∣∣∣ vol(ΛL)

vol(ΛL′)
− n(XL)

n(XL′)

∣∣∣∣ < ε vol(ΛL)

2U
. (5.41)

In addition, Prop. 1 on pointwise convergence holds, since all functional summaries

considered in this work are uniformly bounded and equicontinuous. Thus, provided L,L′

are sufficiently large, we almost surely find

∣∣∣∣A(DL)(s)

n(XL)
− A(DL′)(s)

n(XL′)

∣∣∣∣ =

∣∣∣∣∣∣ 1

n(XL)

∑
x∈DL

A({x})(s)− 1

n(XL′)

∑
x∈DL′

A({x})(s)

∣∣∣∣∣∣
<
ε vol(ΛL)

2n(XL)
. (5.42)

Choosing L,L′ sufficiently large, such that Eqs. (5.41) and (5.42) are valid, we can

estimate Eq. (5.39) further,∣∣∣∣ 1

vol(ΛL′)
A(D′L)(s)− 1

vol(ΛL)
A(DL)(s)

∣∣∣∣ < ε |A(DL′)(s)|
2U

+
ε

2
< ε. (5.43)

Indeed, A almost surely constitutes an intensive functional summary.

A property to exploit later is ergodicity in the sense that for intensive functional

summaries asymptotically the ensemble-average can be replaced by the infinite-volume

limit.

Definition 11. Let (XL,i)L>0,i∈N be a family of ensembles of point clouds. Define

DL,i :=
⋃d
`=0 Dgm

(α)
` (XL,i) for all i ∈ N, L > 0. Let j ∈ N be arbitrary. We say that the
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family (XL,i)L,i reflects ergodicity, if for any j ∈ N the following conditions hold,

(i) (XL,j)L distributes homogeneously,

(ii) card(Del(X)) = O(card(X)) for all X := XL′ ∩ (a + R[0, L]d) with a ∈ [0, L′]d,

R ∈ SO(d), L′ > L > 0 sufficiently large,

(iii) given any ε > 0, for each intensive functional summaries F ∈ I there exists an

LF,ε > 0, such that for all L ≥ LF,ε,

sup
s∈Ω

∣∣∣∣∣ lim
L′→∞

F (

d⋃
`=0

DL′,j,`)(s)− lim
n→∞

1

n

n∑
i=1

F (

d⋃
`=0

DL,i,`)(s)

∣∣∣∣∣ < ε. (5.44)

Remark. Following Prop. 3, given ensembles of point clouds that reflect ergodicity and

given an additive functional summary A ∈ A , the reflection of ergodicity almost surely

yields that for any ε > 0 an LA,ε > 0 exists, such that for all L ≥ LA,ε and all j ∈ N,

sup
s∈Ω

∣∣∣∣∣ lim
L′→∞

1

vol(ΛL′)

d∑
`=0

A(DL′,j,`)(s)− lim
n→∞

1

n vol(ΛL)

n∑
i=1

d∑
`=0

A(DL,i,`)(s)

∣∣∣∣∣ < ε, (5.45)

that is, asymptotically, the infinite-volume limit can be replaced by the ensemble-average

of point clouds in particular for this type of functional summaries.

A crucial object in what follows is the asymptotic persistence pair distribution, which

we reintroduce here in the given setting.

Definition 12. Let (Di,`)i∈N,`=0,...,d ⊂ D be an ensemble of persistence diagrams, one for

each dimension `. Using Dirac delta functions, for each diagram we define its persistence

pair distribution,

Pi,`(r′b, r′d) :=
∑

(rd,rb)∈Di,`

δ(r′b − rb) δ(r′d − rd), ∀ r′b, r′d ∈ [0,∞). (5.46)

We define the `-th asymptotic persistence pair distribution, P̄`, implicitly, requiring that

for any functional summary F : D → F ,∫ ∞
0

dr′b

∫ ∞
0

dr′d F ({(r′b, r′d)})(s) P̄`(r′b, r′d)

:= lim
n→∞

1

n

n∑
i=1

∫ ∞
0

dr′b

∫ ∞
0

dr′d F ({(r′b, r′d)})(s)Pi,`(r′b, r′d), ∀ s ∈ Ω. (5.47)
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Definition 13. Let (P̄`(t))`=0,...,d, t∈R be a family of asymptotic persistence pair distri-

butions. We define the average number of persistent homology classes as

n(t) :=
d∑
`=0

∫ ∞
0

drb

∫ ∞
0

drd P̄`(t)(rb, rd) ∀ t ∈ R. (5.48)

Let q ≥ 1. The average degree-q persistence length is defined as

Lq(t) :=

 1

n(t)

min{bqc,d}∑
`=0

∫ ∞
0

drb

∫ ∞
0

drd (rd − rb)q P̄`(t)(rb, rd)

1/q

. (5.49)

For each ` and t, let (Di,`(t))i∈N ⊂ D be the ensemble of persistence diagrams, from

which the asymptotic persistence pair distribution P̄`(t) is computed. We define the

average maximum death radius as

rd,max(t) := lim
n→∞

1

n

n∑
i=1

max
{
rd
∣∣ (rb, rd) ∈ Di,`(t), ` = 0, . . . , d}. (5.50)

Remark. In the lattice framework all three quantities introduced in the previous defi-

nition are well-defined functional summaries, in particular homogeneously bounded and

trivially equicontinuous.

Proposition 4. Given the lattice framework, let (P̄L,`(t))L>0,`=0,...,d, t∈R be a family of

asymptotic persistence pair distributions. For each L > 0 and t ∈ R, let (XL,i(t))i∈N ⊆
ΛL be an ensemble of nested point clouds, from which the asymptotic persistence pair

distributions (P̄L,`(t))` can be computed. For each t ∈ R, (XL,i(t))L,i ⊆ ΛL shall reflect

ergodicity. Then, almost surely the average maximum death radius is independent from

the choice of an ensemble of point clouds corresponding to the asymptotic persistence pair

distributions.

Proof. Choose an arbitrary t ∈ R. Define DL,i,`(t) := Dgm
(α)
`

(
XL,i(t)

)
for all L, i, `.

Let PL,i,`(t) be the persistence pair distribution computed from DL,i,`(t), PL,`(t) its

asymptotic distribution in the sense of Eq. (12). We make use of the identity

max
{
rd
∣∣ (rb, rd) ∈ DL,i,`(t), ` = 0, . . . , d

}
= lim

p→∞

( d∑
`=0

∑
(rb,rd)∈DL,i,`(t)

rpd

)1/p

, (5.51)

which is a general result for p-norms in finite dimensions. In the lattice framework the
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right-hand side of this equation is bounded from above. We note that for all p

1

vol(ΛL)1/p

( d∑
`=0

∑
(rb,rd)∈DL,i,`(t)

rpd

)1/p

(5.52)

is almost surely an intensive functional summary, employing Prop. 3. Let ε > 0 and L > 0

be sufficiently large in the sense of Def. 11, applied twice in the following computation.

Then, ξ, ξ′ ∈ R with |ξ|, |ξ′| < ε exist, such that almost surely for any j ∈ N:

rd,max(t) = lim
p→∞

vol(ΛL)1/p lim
n→∞

1

n

n∑
i=1

1

vol(ΛL)1/p

( d∑
`=0

∑
(rb,rd)∈DL,i,`(t)

rpd

)1/p

= lim
p→∞

vol(ΛL)1/p

(
lim
L′→∞

1

vol(ΛL′)

d∑
`=0

∑
(rb,rd)∈DL′,j,`(t)

rpd

)1/p

+ ξ

= lim
p→∞

( d∑
`=0

∫ ∞
0

drb

∫ ∞
0

drd r
p
d P̄L,`(t)(rb, rd) + ξ′

)1/p

+ ξ. (5.53)

Upon increasing L, |ξ| and |ξ′| can be rendered arbitrarily small. Thus, given a family of

asymptotic persistence pair distributions, the average maximum death radius is almost

surely independent from the choice of an ensemble of point clouds corresponding to the

asymptotic persistence pair distributions.

5.6 A packing relation from bounded total persistence

In this section we deduce Eq. (5.24) more rigorously under physically reasonable assump-

tions and mathematically reveal, that it actually encodes a bound on packing a number

of homology classes of finite size into a compact volume.

Using elements of the proof of the Wasserstein stability theorem [66] as presented

in Sec. 3.3.2, in a packing lemma we first establish an upper bound on the number of

persistence pairs, hinted at by H. Edelsbrunner. A consequence of the bounded number of

persistence pairs is then a relation between appearing scaling exponents in a self-similar

scaling ansatz to the asymptotic persistence pair distribution as defined previously.

5.6.1 The packing lemma

Wasserstein stability preliminaries and terminology

Throughout, let M be a connected, triangulable, compact metric space and d : M ×
M → R a metric. We assume that the size of the smallest triangulation N(r) grows

polynomially with one over the mesh to the power of d. We assume furthermore that

M ⊂ Rd. If not stated otherwise, notations are those used in Sec. 3.3.2.
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Notation. Given a Lipschitz function f : M → R, sublevel sets are denoted by

Ma := f−1(−∞, a] for all a ∈ R. For all a ≤ b we denote the homomorphism be-

tween homology groups induced by the inclusion Ma ⊆Mb by ιa,b` : H`(Ma)→ H`(Mb),

` = 0, . . . , d. Homology groups are assumed to have values in Z2. The persistence diagram

of f is denoted by Dgm`(f), ` = 0, . . . , d, filtering by the nested sequence of sublevel sets

and is the multiset of all birth-death pairs of `-dimensional persistent homology classes

appearing in course of the filtration of sublevel sets. Throughout, persistence diagrams

are defined modulo zero-persistence elements.

As a lemma we rephrase the intermediate result of Ref. [82] given in Eq. (3.30).

Lemma 4 (Bounded total persistence). Let f : M → R be a tame Lipschitz function.

Let the size of the smallest triangulation of M , N(r), grow polynomially with one over

the mesh, that is, constants C and µ exist, such that N(r) ≤ C/rµ for all r > 0. Then,

for all ε ≥ 0 and all δ > 0 the following bound on the degree-(µ+ δ) total persistence of

f holds,

Persµ+δ(f, ε) ≤ C Lip(f)µAmp(f)δ
µ+ 2δ

δ
. (5.54)

We define a family of persistence length scales, similar to those introduced in Sec.

5.3.

Definition 14. Let X ⊂ M be a point cloud and q ≥ 1. We compute the number of

persistence pairs via

n(X) :=
d∑
`=0

card(Dgm
(α)
` (X)). (5.55)

The degree-q persistence length is defined as

Lq(X) :=

 1

n(X)

min{bqc,d}∑
`=0

∑
(rb,rd)∈Dgm

(α)
` (X)

(rd − rb)q


1/q

, (5.56)

where bqc = max{k ∈ N | k ≤ q}.
Geometrical notions employed in this appendix include the following.

Definition 15. Let X ⊂ Rd be a point cloud. The circumcenter of the largest empty

circumsphere of a simplex σ ∈ Del(X) is denoted by c(σ). Given a simplex σ ∈ Del(X),

dim(σ) = `, its barycenter is defined as

b(σ) :=
1

`+ 1

`+1∑
i=1

xi, (5.57)

the xi being the vertices spanning σ.
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Remark. By construction, b(σ) ∈ Conv(σ) for all σ ∈ Del(X). This is not necessarily

the case for circumcenters: for instance, the circumcenter of any obtuse triangle in Del(X)

does not lie in the triangle’s convex hull.

The packing lemma in dimension d = 1

Let M ⊂ R be a compact, connected and triangulable metric space.

Proposition 5. Let X ⊂M be a point cloud. Then a tame Lipschitz function fX : M →
R+ with Lip(fX) = 1 exists, such that

Dgm0(fX) = Dgm
(α)
0 (X). (5.58)

Proof. Let X = {x1, . . . , xm}. Without loss of generality, the xi be ordered such that

xi < xj whenever i < j. One may define a function fX : M → R+ as follows. Set

fX(X) := 0. For all y ∈M with y < x1, define fX(y) := 0. Similarly, for all y ∈M with

y > xm, define fX(y) := 0. For xi < y < xi+1, i = 1, . . . ,m− 1, define

fX(y) :=

y − xi for y ∈ (xi, (xi + xi+1)/2]

xi+1 − y for y ∈ ((xi + xi+1)/2, xi+1)
(5.59)

Constructed this way, fX is tame and Lipschitz with Lip(fX) = 1. We find that sublevel

sets, Ma, and geometric realizations of the alpha shapes, |Dela(X)|, are by construction

homotopy-equivalent for all a ∈ R. This implies equal homology groups, H0(Ma) =

H0(Dela(X)) for all a ∈ R+. Hence, Dgm0(fX) = Dgm
(α)
0 (X).

Remark. M itself being contractible by compact- and connectedness, H`(Dela(X)) = 0

for all ` ≥ 1, a ∈ R+. Thus, Dgm`(fX) = Dgm
(α)
` (X) = ∅ for all ` ≥ 1.

By proposition 5 and the previous remark a simple corollary follows.

Corollary 1. Let X ⊂M be a point cloud. Then

L1(X) =
1

n(X)

∑
(0,rd)∈Dgm

(α)
0 (X)

rd =
1

n(X)

∑
(0,rd)∈Dgm0(fX)

rd, (5.60)

using that in the filtration of alpha shapes all zero-dimensional persistent homology classes

are born at radius zero.

Proposition 6. Let X ⊂M be a point cloud. Then, W1(fX , 0) = n(X)L1(X)/2.

Proof. Given a persistence pair x = (0, rd) ∈ Dgm0(fX), we note that for any y = (r, r),

r ∈ R+, the inequality ||x − y||∞ ≥ rd/2 holds. This bound is sharp, fulfilled by y =
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(rd/2, rd/2). Setting γ̃0((0, rd)) := (rd/2, rd/2) for all (0, rd) ∈ Dgm0(fX), a bijection

γ̃0 : Dgm0(fX)→ Dgm0(0) exists, such that

W1(fX , 0) = inf
γ0

∑
x∈Dgm0(fX)

||x− γ0(x)||∞

=
∑

x∈Dgm0(fX)

||x− γ̃0(x)||∞

=
∑

(0,rd)∈Dgm0(fX)

rd
2
. (5.61)

Employing Corollary 1, the degree-1 Wasserstein distance to the zero-function can be

computed as

W1(fX , 0) =
1

2

∑
(0,rd)∈Dgm

(α)
0 (X)

rd =
1

2
n(X)L1(X). (5.62)

The final packing lemma in d = 1 follows easily.

Lemma 1 (Packing lemma for d = 1). Let X ⊂M be a point cloud. Then,

n(X) ≤ λ1(M)

L1(M)
, (5.63)

λ1(M) denoting the Lebesgue measure of M .

Proof. M ⊂ R being compact and connected, it certainly has bounded degree-1 total

persistence. Specifically, Pers1(f) ≤ λ1(M)/2 for every tame f : M → R with Lip(f) ≤
1. Here, we made use of the absence of one-dimensional persistent homology classes.

Since the bound is sharp, in Theorem 2 CM = λ1(M)/2. We apply Theorem 2 to the

pair f = fX and g = 0. To this end, C = CM and we obtain

W1(fX , 0) =
n(X)L1(X)

2
≤ λ1(M)

2
. (5.64)

Upon reshuffling, this gives the desired inequality.

The packing lemma in dimension d > 1

In general dimension d > 1 two obstacles appear, compared to d = 1. Caution needs to

be exercised for that the circumcenter of a simplex does not necessarily lie in its convex

hull. Second, the Wasserstein stability theorem does not yield the desired inequality.

Instead, we make use of Lemma 4.

Let M ⊂ Rd be a compact, convex and triangulable metric space of dimension d.
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Proposition 7. Let X ⊂M be a point cloud. Then a tame Lipschitz function fX : M →
R+ exists, such that

Dgm`(fX) = Dgm
(α)
` (X) ∀ ` ≥ 0. (5.65)

Proof. The construction of a Lipschitz function fX : M → R+ is carried out inductively

on geometric realizations of the skeletons of the Delaunay complex, understood as subsets

of M , f
(k)
X : |Del(X)(k)| → R+.

First, set f
(0)
X (X) := 0. Now, assume that f

(k)
X has been constructed for some k ≥ 0.

Let σ ∈ Del(X)(k+1) with dim(σ) = k + 1. First assume that c(σ) ∈ Conv(σ) and define

f
(k+1)
X (tz + (1− t)c(σ)) := tf

(k)
X (z) + (1− t)Rad(σ),

∀ t ∈ [0, 1], z ∈ τ, τ facet of σ. (5.66)

Thus, f
(k+1)
X (c(σ)) = Rad(σ). By means of this construction,

Lip
(
f

(k+1)
X

∣∣
Conv(σ)

)
= max

{
1,max

{
Lip

(
f

(k)
X

∣∣
Conv(τ)

)∣∣∣ τ facet of σ
}}

, (5.67)

that is, the Lipschitz constant of f
(k+1)
X

∣∣
Conv(σ)

does not increase compared to f
(k)
X . We

repeat this definition for all (k + 1)-simplices σ ∈ Del(X)(k+1) with c(σ) ∈ Conv(σ).

Otherwise, if c(σ) /∈ Conv(σ), define

f
(k+1)
X (tz + (1− t)b(σ)) := tf

(k)
X (z) + (1− t)Rad(σ),

∀ t ∈ [0, 1], z ∈ τ, τ facet of σ, (5.68)

such that f
(k+1)
X (b(σ)) = Rad(σ). Herewith,

Lip
(
f

(k+1)
X

∣∣
Conv(σ)

)
= max

{
max

{ |Rad(σ)− f (k)
X (z)|

|b(σ)− z|

∣∣∣∣∣ z ∈ Conv(τ), τ facet of σ

}
,

max

{
Lip

(
f

(k)
X

∣∣
Conv(τ)

)∣∣∣ τ facet of σ

}}
, (5.69)

that is, the Lipschitz constant of f
(k+1)
X

∣∣
Conv(σ)

may exceed Lip(f
(k)
X ) upon this con-

struction. We repeat this construction for all (k + 1)-simplices σ ∈ Del(X)(k+1) with

c(σ) /∈ Conv(σ). Having carried out the construction for both types of simplices, f
(k+1)
X

is defined on all |Del(X)(k+1)|. Finally, we set fX
∣∣
Conv(Del(X))

:= f
(d)
X and define fX(z) :=

miny∈X d(y, z) for all z ∈ M − Conv(Del(X)). Clearly, Lip(fX
∣∣
M−Conv(Del(X))

) = 1.

Note that fX is well-defined on all M . By construction, fX is tame and Lipschitz with
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1 ≤ Lip(fX) <∞.

Again, sublevel sets of fX , Ma, and geometric realizations of the alpha shapes,

|Dela(X)| are homotopy-equivalent for all a ∈ R+. Hence, H`(Ma) = H`(Dela(X)) for all

a ∈ R+, such that Dgm`(fX) = Dgm
(α)
` (X), both for all ` = 0, . . . , d, respectively.

Remark. Note that in general the function constructed in proposition 7 has a Lipschitz

constant different from one, unlike the equivalent proposition 5 in one dimension.

We can directly formulate the packing lemma in general d > 1.

Lemma 2 (Packing lemma for d > 1). Assume that for M a constant C > 0 exists,

such that N(r) ≤ C/rd for all r > 0. Let X ⊂ M be a point cloud. Set rd,max(X) :=

max{rd | (rb, rd) ∈ Dgm`(fX), ` = 0, . . . , d}. Then,

n(X) ≤ C(d+ 2δ)

δ
Lip(fX)d

(rd,max(X))δ

Ld+δ(X)d+δ
∀ δ > 0. (5.70)

Proof. N(r) ≤ C/rd for all r > 0 implies that for fX lemma 4 holds. To this end, letting

δ > 0, it follows that

Persd+δ(fX) = Persd+δ(fX , 0)

≤ C Lip(fX)dAmp(fX)δ
d+ 2δ

δ
. (5.71)

The left-hand side of this equation evaluates to Persd+δ(fX) = n(X)Ld+δ(X)d+δ. Addi-

tionally, Amp(fX) = rd,max(X). The desired inequality follows.

5.6.2 Self-similar scaling exponents from packing

We first reintroduce self-similarity for a family of asymptotic persistence pair distributions

of different dimensions, ` = 0, . . . , d.

Definition 16. Let (P̄`(t))`=0,...,d, t∈R be a family of asymptotic persistence pair distri-

butions. We say that (P̄`(t))`,t scales self-similarly with exponents η1, η2, if for all t, t′ ∈ R
and for all ` = 0, . . . , d:

P̄`
(
t)(rb, rd

)
= (t/t′)−η2 P̄`

(
t′)((t/t′)−η1rb, (t/t

′)−η1rd
)
. (5.72)

Proposition 8. Let (P̄`(t))`=0,...,d, t∈R be a family of asymptotic persistence pair distri-

butions that scales self-similarly with exponents η1, η2. Then, for all t, t′ ∈ R and q ≥ 1,

n(t) = (t/t′)2η1−η2n(t′), Lq(t) = (t/t′)η1Lq(t
′). (5.73)
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Given the lattice framework and the existence of self-similarly scaling P̄`(t) as before, but

for all sufficiently large lattice sizes, if the asymptotic persistence pair distributions stem

from point clouds that reflect ergodicity, then we almost surely find:

rd,max(t) = (t/t′)η1rd,max(t′). (5.74)

Proof. Let t, t′ ∈ R. The derivations of the first two equations are clear from correspond-

ing definitions. To obtain the third equation, we employ Eq. (5.53). Sufficient conditions

for its validity are fulfilled, in particular the lattice framework and the reflection of ergod-

icity. In the limit of L → ∞ we can ignore possible small deviations from the reflection

of ergodicity, previously denoted by ξ and ξ′. Accordingly, we set ξ = ξ′ = 0 and almost

surely find

rd,max(t) = lim
p→∞

( d∑
`=0

∫ ∞
0

drb

∫ ∞
0

drd r
p
d P̄`(t)(rb, rd)

)1/p

= lim
p→∞

(
(t/t′)(p+2)η1−η2

d∑
`=0

∫ ∞
0

dr′b

∫ ∞
0

dr′d r
p
d P̄`(t′)(r′b, r′d)

)1/p

= lim
p→∞

(t/t′)(1+2/p)η1−η2/p
( d∑
`=0

∫ ∞
0

dr′b

∫ ∞
0

dr′d r
p
d P̄`(t′)(r′b, r′d)

)1/p

= (t/t′)η1rd,max(t′). (5.75)

In order to apply the packing lemma, we first introduce a notion to simplify the

treatment of the Lipschitz constant on ensembles of time-dependent point clouds.

Definition 17. Given the lattice framework, let (Xi(t))i∈N,t∈R be a family of ensembles

of point clouds. Define Di,`(t) := Dgm
(α)
` (Xi(t)) for all i, t and ` = 0, . . . , d. We say that

(Xi(t))i,t has time-independent Lipschitz constant upon averaging, if a constant κ > 0

exists, such that for any p > 0, any intensive functional summary F ∈ I and all times

t ∈ R:

lim
n→∞

1

n

n∑
i=1

Lip
(
fXi(t)

)p
F (Di,`(t)) = κp lim

n→∞

1

n

n∑
i=1

F (Di,`(t)) ∀ ` = 0, . . . , d. (5.76)

Note. In the lattice framework, one may motivate this notion by that due to its con-

struction, Lip
(
fXi(t)

)
is very sensitive to precise geometric arrangements of the points
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in X. This can render Lip
(
fXi(t)

)
time-independent upon averaging in the above sense.

Additionally, it is bounded from above on the lattice.

Finally, using the packing lemma we deduce a relation between exponents that appear

in the self-similar scaling approach to the asymptotic persistence pair distribution.

Theorem 4. Given the lattice framework, let (P̄L,`(t))L>0,`=0,...,d, t∈R be a family of

asymptotic persistence pair distributions in dimension d > 1. For each L > 0, ` = 0, . . . , d

and t ∈ R, let (XL,i(t))i∈N ⊂ ΛL be an ensemble of nested point clouds from which the

asymptotic persistence pair distributions P̄L,`(t) can be computed and which reflects er-

godicity. For all L > 0, (XL,i(t))i∈N,t∈R ⊂ ΛL is assumed to have time-independent

Lipschitz constant upon averaging. Let the whole family of asymptotic persistence pair

distributions scale self-similarly with exponents η1, η2. Then, almost surely

η2 = (2 + d)η1. (5.77)

Proof. Let L > 0 be sufficiently large, such that ergodicity applies. Let t ∈ R and δ > 0.

For all i ∈ N, Lemma 2 yields the inequality

nXL,i(t) ≤
C(d+ 2δ)

δ
Lip
(
fXL,i(t)

)d rd,max

(
XL,i(t)

)δ
Ld+δ

(
XL,i(t)

)d+δ
. (5.78)

Upon averaging and exploiting that by time-independence of the Lipschitz constant upon

averaging a corresponding constant κ > 0 exists, we find

nL(t) := lim
n→∞

1

n

n∑
i=1

nXL,i(t) ≤
C(d+ 2δ)

δ
lim
n→∞

1

n

n∑
i=1

Lip
(
fXL,i(t)

)d rd,max

(
XL,i(t)

)δ
Ld+δ

(
XL,i(t)

)d+δ

=
C(d+ 2δ)

δ
κd lim

n→∞

1

n

n∑
i=1

rd,max

(
XL,i(t)

)δ
Ld+δ

(
XL,i(t)

)d+δ
. (5.79)

Choose an arbitrary j ∈ N. On the right-hand side of this inequality we can make use of

ergodicity, since rd,max and Ld+δ constitute intensive functional summaries on the point

clouds of interest,

nL(t) ≤ C(d+ 2δ)

δ
κd lim

L′→∞

rd,max

(
XL′,j(t)

)δ
Ld+δ

(
XL′,j(t)

)d+δ
=
C(d+ 2δ)

δ
κd

rd,max(t)d

Ld+δ(t)d+δ
. (5.80)

Exploiting self-similarity, we almost surely find by Prop. 8,

rd,max(t)d

Ld+δ(t)d+δ
= (t/t′)−dη1

rd,max(t′)d

Ld+δ(t′)d+δ
∀ t, t′ ∈ (T0, T1). (5.81)
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Hence, we almost surely find by means of Eq. (4),

(t/t′)2η1−η2nL(t′) ≤ (t/t′)−dη1
C(d+ 2δ)

δ
κd

rd,max(t′)d

Ld+δ(t′)d+δ
∀ t, t′ ∈ (T0, T1). (5.82)

In the limit t/t′ → ∞ this implies 2η1 − η2 ≤ −dη1. In the limit t/t′ → 0 this implies

2η1 − η2 ≥ −dη1. The desired equality follows almost surely.

Remark. Under the same assumptions as in Theorem 4, dropping the time-independence

of the Lipschitz constant upon averaging, in dimension d = 1 the same relation (5.77)

between the two scaling exponents holds.



Chapter 6

Numerical testbed: The

nonrelativistic Bose gas

As a numerical proof of principle of persistent homology observables’ universality mani-

festing itself in a self-similar scaling evolution of the asymptotic persistence pair distribu-

tion, in this chapter we primarily investigate a multitude of geometric quantities derived

from the latter at infrared nonthermal fixed points in the two-dimensional nonrelativistic

Bose gas.

In Sec. 6.1 we first describe the numerical setup of simulations and the computation

scheme for persistent homology observables. Occupation number results and their self-

similar properties are given in Sec. 6.2, forming the basis for a comparison with persistent

homology observables results such as birth and death radii distributions as provided sub-

sequently, cf. Sec 6.3. The resulting self-similar scaling evolution of persistent homology

observables requires a thorough discussion, since interestingly a continuous spectrum of

scaling exponents is observed, depending on a filtration parameter, cf. Sec. 6.4. We

argue for this phenomenon to indicate the mixing of two universal scaling species, the

two being related to the different infrared nonthermal fixed points existing in the two-

dimensional nonrelativistic Bose gas: the strong wave turbulence nonthermal fixed point

and the anomalous vortex kinetics nonthermal fixed point. Basis for this is to infer that

sound excitations in the bulk give rise to the strong wave turbulence nonthermal fixed

point, strongly supported by analytic and numerical evidence [4, 46]. On top, the ex-

ponent spectrum slightly alters in the course of time due to amplitude redistribution

effects as explained in Sec. 6.5. Investigating the distribution of persistences, one finds

indications for a power-law behavior scaling with persistence, cf. Sec. 6.6. We conclude

this chapter with a discussion of Betti numbers in Sec. 6.7, providing a consistency check

for the deduced self-similar properties.

66
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Figure 6.1: An example field configuration and corresponding point clouds in the vicinity
of an IR nonthermal fixed point. Panel (a): Spatially-resolved amplitude of the field
ψ(t,x). From (b) to (e): Point clouds Xν(t) for the different ν̄-values indicated. Panel (f):
Spatially-resolved phase-values of the field ψ(t,x). Simulation parameters are denoted
in Sec. 6.1.1. Results are shown at simulation time Qt = 3750.

6.1 Numerical prerequisites

In this section we motivate numerical choices and provide details on the simulations and

analyses of their results, in particular via persistent homology techniques.

6.1.1 Simulations via the Gross-Pitaevskii equation

The nonrelativistic Bose gas can be described by complex scalar fields, ψ, as discussed

in detail in Sec. 2.2. We restrict applications to the overoccupied regime, in which the

classical-statistical approximation as described in Sec. 2.3.3 is suitable [4]. Accordingly,

at initial time an ensemble of classical field configurations with Gaussian fluctuations

is generated, computing the subsequent dynamics of individual configurations via the

Gross-Pitaevskii equation. Initially, for the Fourier-transformed statistical two-point

correlation function an overoccupied box is chosen,

f(0,p) =
50

2mgQ
Θ(Q− |p|), (6.1)

with m/Q = 8 throughout this chapter and f as defined in Eq. (2.31). Outside the box,

no ‘quantum-half’ is taken into account. At zero momentum, no initial condensate is

set. Spatial coordinates are restricted to a square lattice, Λ, consisting of a regular grid

of N2 points within a volume L2 with periodic boundary conditions. Throughout this

work, the lattice spacing reads Qa = 0.0625, the number of lattice sites N = 1536.

As given in Eq. (5.1), point cloudsXν(t) ⊆ Λ are defined as sublevel sets of amplitudes

of individual field configurations to a given maximum value ν. The filtration parameter,

ν, is described via the dimensionless quantity ν̄, defined as

ν̄ := ν/〈|ψ(t = 0)|〉vol, (6.2)
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with the volume-averaged initial amplitude

〈|ψ(t = 0)|〉vol =
1

N2

∑
x∈Λ

|ψ(t = 0,x)|. (6.3)

In Fig. 6.1 amplitudes, a variety of corresponding point clouds and phases of a single

field configuration ψ are displayed for a simulation time, at which the system is in the

vicinity of a nonthermal fixed point. Clearly visible in point clouds are two components:

points in the bulk and vortices. Having approximately zero amplitude at the center of

their nuclei, vortices dominate the point clouds Xν(t) for small values of ν. Increasing

ν, points first accumulate around vortex nuclei but at moderately high values also occur

in the bulk. The higher ν gets, the denser point clouds become, reducing the average

distance between points. Due to this, evaluating alpha complexes and their persistent

homology groups at different ν-values effectively probes the system on different length

scales. Effects of all this will become clearly visible in Sec. 6.3.

6.1.2 Persistent homology pipeline and miscellanea

We apply GUDHI functions to point clouds generated from individual field configura-

tions at different times as in Eq. (5.1), independently. Obtaining persistent homology

outcomes at various times for each and every field configuration, ensemble-averages are

taken. We average n = 50 configurations throughout this work. For that many con-

figurations we have verified that the persistent homology observables B̄`(t, rb), D̄`(t, rd),
Π̄`(t, r) and β̄`(t, r) as given in Sec. 5.3 converged properly. Throughout, ` indicates that

the defining asymptotic persistence pair distribution is computed from `-th persistence

diagrams. Persistent homology observables without a radius-dependence such as Lq(t)

or n(t) often require much less statistics. Due to the lack of statistics, a direct analysis

of the asymptotic persistence pair distribution P̄` is unfeasible. In Appendix A we ana-

lyze in more detail the convergence behavior of persistent homology observables with an

increasing number of configurations to average, n.

We numerically extract scaling exponents by taking B̄`(t, rb) and D̄`(t, rd) into ac-

count, simultaneously. In Appendix B.2 we describe the corresponding numerical proto-

col in detail.

Of course, point clouds that are subsets of a regular lattice are generically not in gen-

eral position, which can result in their Delaunay complex not being a simplicial complex.

GUDHI removes corresponding ambiguities by means of a built-in perturbation scheme

for points out of general position. Effects of this procedure are not visible.

While simulations take periodic boundary conditions into account, alpha complexes of

point clouds are computed non-periodically. This comes about since a crucial function to

accomplish this for two-dimensional alpha complexes is still missing in GUDHI. Certainly,
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the toroidal topology of the lattice Λ would have an effect on, for example, computed

Betti numbers: The 2-torus has β0(T 2) = 0, β1(T 2) = 2 and β2(T 2) = 1, which would

at all times and radii add to β̄`(t, r). The dynamics of point clouds and their persistent

homology groups, however, would remain unaltered, which is why in our dynamical

analysis the effects of taking into account the toroidal lattice topology are negligible.

The topology of a square lattice with open boundaries being trivial, no nontrivial

two-dimensional homology classes can be present in the constructed alpha complexes,

which is why all persistence diagrams at dimension two, Dgm2(Xν(t)), are empty.

Employing that low energies and momenta in the infrared correspond to large dis-

tances, if infrared physics is visible in persistent homology observables, it will typically

show up at birth and death radii large compared to the lattice spacing. Vice versa, if

ultraviolet physics is visible in persistent homology observables, then it will show up at

comparably small birth and death radii. To this end, we identify the large-radii regime in

birth and death radii distributions with the infrared. The same holds for Betti number

distributions. Describing differences between birth and death radii of homology classes,

this association is not valid for persistence distributions.

Let O(t, r) be a persistent homology observable expected to rescale according to, for

example,

O(t, r) = (t/t′)η
′
1−η2 O(t′, (t/t′)−η1r). (6.4)

Then, residuals for reference time Qt′ are computed as

Res.[O](t′, r) :=
(t/t′)η2−η

′
1O(t, (t/t′)η1r)−O(t′, r)

O(t′, r)
. (6.5)

6.2 Two-point correlation function results

In this section, we study the scaling properties of the time-dependent occupation number

spectrum f(t,p) as defined in Eq. (2.31).

A scaling ansatz for the occupation number distribution, f(t, p), includes two scaling

exponents, α and β as described previously around Eq. (2.1),

f(t, |p|) = (t/t′)α f(t′, (t/t′)β|p|). (6.6)

In the infrared regime, a thorough numerical analysis as described in Appendix B.1

yields the following scaling exponents,

β = 0.190± 0.012, α = 0.400± 0.028, (6.7)

choosing reference time Qt′ = 1250, fitting momenta between p/Q = 0.07 and p/Q = 0.7

and times between Qt = 1875 and Qt = 37500. Thus, α/β = 2.11 ± 0.20. In Fig. 6.2
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Figure 6.2: Occupation number distributions in the infrared. In black: The initial un-
rescaled occupation number distribution.
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occupation number spectra are displayed in the infrared. By means of the residuals the

correctness of the extracted scaling exponents can be easily verified.

The infrared results confirm the findings for box initial conditions in Ref. [47], in

which the infrared dynamics of a two-dimensional relativistic scalar field theory has

been mapped to that of nonrelativistic complex scalar fields. The extracted scaling

exponent β is in very good agreement with the prediction for the anomalous vortex

kinetics nonthermal fixed point in a nonrelativistic single-component Bose gas, attributed

to the specific dynamics of vortex defects and related vortex interactions in Ref. [46] and

discussed in Sec. 2.4.1. Additionally, α/β ≈ 2 indicates the transport of particle numbers

to lower momenta [4].

6.3 Birth and death radii distributions

At large length scales, in Fig. 6.3 birth and death radii distributions are displayed for

different filtration parameters and times between Qt = 3750 and Qt = 35625. Zero-

dimensional persistent homology classes are always born at radius Qrb = 0, turning the

distribution of birth radii of zero-dimensional homology classes trivial. Residuals are

computed as described in Eq. (6.5).

The occurring oscillations in distributions are due to statistical uncertainties, being

computed from only a finite number of classical-statistical samples. Note that for smaller

ν̄-values point clouds comprise fewer points compared to point clouds at larger ν̄-values.

Correspondingly, outcomes for persistent homology observables at low ν̄-values behave by

construction statistically worse compared to those at higher ν̄-values. The distributions

displayed in Fig. 6.3 reflect this.

We first discuss unrescaled variants of the displayed distributions. It is important to

note that in any of the distributions the maximum number of counts in birth and death

radii distributions decreases with time. Simultaneously, the steep decline at largest radii

in birth and death distributions constantly moves to higher radii. This reflects the well-

known coarsening dynamics associated to the inverse cascade in the infrared [4] and

visible in correlation function results for our simulations, cf. Sec. 6.2.

At the small ν̄-value of 0.2, one may notice that a clear peak in distributions for both

dimension ` = 0 and dimension ` = 1 exists. Point clouds at small ν̄-values being vortex

nuclei-dominated, we expect this distinguished length scale to provide a measure for the

average inter-vortex distance. The peak is less dominant at higher ν̄. We assume that

this is due to blurring of the inter-vortex distance by means of bulk points entering point

clouds.

The overall form of the unrescaled distributions remains constant in the course of time

up to statistical errors, hinting at universal self-similar behavior. The only exceptions are

D̄0(t) for ν̄ = 0.6 and ν̄ = 0.7, displayed in Fig. 6.3, panels (a3) and (a4), for which the
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Figure 6.3: Birth and death radii distributions in the infrared. First and second row:
death radii of zero-dimensional homology classes, D̄0(t). Third and fourth row: birth radii
of one-dimensional homology classes, B̄1(t). Each column shows data for the indicated
filtration parameter, ν̄. The employed time-dependent scaling exponents are displayed
in Fig. 6.5.
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Figure 6.4: Persistent homology scaling exponents at the indicated minimum fitting
times, Qtmin, the arrow indicating the 2-point correlation function result for the scaling
exponent β, as given in Eq. (6.7).

Figure 6.5: Persistent homology scaling exponents for different filtration parameters, ν̄,
and minimum fitting times, Qtmin.

form of the distribution changes in the course of time. Besides this, all effects discussed are

the same across dimensions and types of distributions, indicating the universality of self-

similar scaling behavior at infrared nonthermal fixed points across persistent homology

observables constructed from the asymptotic persistence pair distribution. A posteriori,

this validates that in the self-similar scaling approach to the asymptotic persistence pair

distribution, Eq. (5.14), no dimension-dependence has been denoted.

Indeed, distributions can be consistently rescaled with the exponents given in Fig.

6.5. Shifts of the scaling exponents due to the redistribution of amplitudes are accounted

for by means of time-varying scaling exponents. We elaborate in more detail on this

effect in Sec. 6.5. We observe that for nearly all displayed filtration parameters, ν̄,

distributions can be consistently rescaled. Residuals scatter evenly around zero, at least

for a significant range of radii. Only D̄0(t) for ν̄ = 0.6 and ν̄ = 0.7, displayed in Fig.

6.3, panels (a3) and (a4), shows comparably large deviations from self-similar dynamics,

since the overall shape of the corresponding distributions changes slightly with time.
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6.4 A family of scaling exponents

Using the numerical protocol described in Appendix B.2, time-dependent scaling expo-

nents are extracted from the dimension ` = 1 birth and death distributions. Given a time

Qtmin, birth and death radii distributions at times Qtmin, Qtmin + 625 and Qtmin + 1250

are fitted simultaneously against distributions at reference time Qt′ = 3750. In Fig. 6.4

we show the scaling exponents for individual minimum fitting times, Qtmin, highlighting

the size of error bars. Errors origin from a finite number of classical-statistical samples

taken into account and from fitting uncertainties.

Results are summarized in Fig. 6.5, in which exponents are displayed in the (ν̄, Qtmin)-

plane. The gradual shift of the peak in scaling exponents to higher ν̄-values with an

increasing time, Qtmin, is a result of the redistribution of amplitude values with time,

discussed in Sec. 6.5. The scattering of exponent values at larger ν̄-values is due to

statistical uncertainties.

Within error bars η1 equals η′1 at all ν̄-values investigated here. This provides numer-

ical evidence for that birth and death radii show the same coarsening dynamics in the

infrared. In addition, for all ν̄-values analyzed η2/η1 = 4 within the indicated error bars,

as predicted by Eq. (5.24).

By means of the aforementioned observations we restrict the following discussion to

η1. For ν̄ . 0.4, the exponent η1 meets the value of 1/5 associated to the anomalous

vortex kinetics nonthermal fixed point [46] and confirmed by the self-similar dynamics

of the occupation number spectrum in the given simulations, cf. Sec. 6.2. Point clouds,

alpha complexes and persistence pair distributions reflect the occurring vortex dynamics

for small ν̄, correspondingly.

The exponent η1(ν) increases with ν̄ up to maximum values of between 0.7 and 0.9

depending on Qtmin, cf. Fig. 6.5 — a value which is significantly different from 1/5. We

take a small detour to provide a physical interpretation for this phenomenon.

Collectively, the vortices show anomalous kinetics and dominate point clouds at low

ν̄-values: η1(ν̄ = 0.05) ≈ 0.2. It is well-known, however, that the two-dimensional

nonrelativistic Bose gas not only exhibits the anomalous vortex kinetics nonthermal fixed

point with β = 0.2, but also incorporates the strong wave turbulence nonthermal fixed

point characterized by β = 0.5 [4,8,46]. If the vortices were absent or coupled stronger to

sound excitations in the bulk, only self-similar scaling with β = 0.5 would be visible, as

argued for in Ref. [46]. Motivated by this, we infer that in the configurations investigated

it is sound excitations in the bulk that reflect the strong wave turbulence nonthermal

fixed point. Correspondingly, if bulk points enter point clouds, then persistent homology

observables might show scaling behavior deviating from η1 = 0.2. As can be seen in Figs.

6.1, 6.4 and 6.5 this is the case for growing ν̄-values and explains the increase of η1. We

refer to the underlying phenomenon as scaling species mixing appearing in corresponding
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Figure 6.6: Distribution of amplitude-values at different times, averages taken across
classical-statistical sampling runs.

point clouds.

Yet, the maximum value of η1(ν) exceeds 0.5 significantly for all Qtmin. A heuristic

geometric argument proceeds as follows. Restrict to the dynamics of a single classical-

statistical field configuration and label point clouds by Xν(t). Let Yν(t) ⊆ Xν(t) be

loosely associated to anomalous vortex kinetics and Zν(t) ⊆ Xν(t) associated to strong

wave turbulence in the bulk, such that Xν(t) = Yν(t) ∪ Zν(t). The alpha complexes of

Xν(t), αr(Xν(t)), however, do not simply decay into αr(Yν(t)) and αr(Zν(t)). Instead,

depending on the precise arrangements of points in Yν(t) and Zν(t), there may be a lot

of simplices contained in αr(Xν(t)) which incorporate points of both Yν(t) and Zν(t). In

addition, simplices that only consist of points in Yν(t) or Zν(t) can be very different from

the ones in αr(Yν(t)) and αr(Zν(t)). Thus, the construction of alpha complexes from

Yν(t) and Zν(t) is a highly nonlinear process. Persistent homology observables reflect

this.

6.5 Amplitude redistribution-induced exponent shifts

The scaling exponents displayed in Figs. 6.4 and 6.5 change with time for ν̄ & 0.6. To

discuss the origins of this effect, in Fig. 6.6 amplitude distributions are displayed for

different times between Qt = 3750 and Qt = 37500. As is clearly visible, amplitudes

redistribute with growing times towards the peak at around |ψ(t)|/〈|ψ(t = 0)|〉vol ≈ 1.05.

As indicated in Fig. 6.7, point clouds Xν(t) with ν̄ . 1.0 become sparser with time.

As deduced earlier, at low ν̄-values point clouds are dominated by accumulations of

points around vortex nuclei, while for ν̄ & 0.4 points in the bulk enter point clouds. With

point clouds getting sparser in the course of time it is first bulk points to disappear from

point clouds. Accumulations of points around vortex nuclei remain, as can be seen from
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Figure 6.7: The average cardinality of point clouds varying with ν̄ at different times,
averages taken across classical-statistical sampling runs.

Figure 6.8: Example point clouds Xν(t) for different ν̄-values as indicated. Row (a):
time Qt = 3750. Row (b): Qt = 7500. Row (c): Qt = 11250.
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Figure 6.9: The average maximum death radius of 1-dimensional persistent homology
classes varying with time, displayed for ν̄-values as indicated.

Fig. 6.8, in which point clouds are displayed for different filtration parameters and times.

Given the example point cloud for ν̄ = 0.5 at time Qt = 3750, we observe that it is made

up from accumulations of points (around vertices) mixed with random points in between,

while at time Qt = 11250 the point cloud consists of nothing but the accumulations. The

behavior of point clouds at ν̄ = 0.6 is similar, although the point cloud at Qt = 11250 still

contains random points associated to sound excitations between accumulations. Point

clouds at ν̄ = 0.70 only get sparser but still contain many bulk points.

The average maximum death radius of 1-dimensional persistent homology classes,

r̄d,1,max(t), is displayed for different ν̄-values in Fig. 6.9. Comparably large fluctuations

and outliners occur, since r̄d,1,max(t) is very sensitive to particular geometric arrangements

of points in point clouds of individual classical-statistical samples. According to Eq.

(5.19), if the system’s asymptotic persistence pair distribution scales self-similarly in

time and η1 = η′1, then r̄d,1,max(t) ∼ tη1 . Indeed, r̄d,1,max(t) shows power-law behavior

within individual periods of time and confirms the shifts in scaling exponents as indicated

by the results displayed in Fig. 6.5, which have been deduced from birth and death radii

distributions. For instance, for ν̄ = 0.6 a shift occurs between times Qt ≈ 9000 and

Qt ≈ 13000.

Recently, the phenomenon of prescaling has been discovered, that is, the rapid es-

tablishment of a universal scaling form of distributions long before the universal values

of corresponding scaling exponents are realized [83, 84]. Although we also study time-

dependent scaling exponents of constant-form distributions, we want to stress that in our

case this is not a manifestation of prescaling. Instead, it is an artifact of the sharp cutoff

at the filtration parameter to generate point clouds, rendering point clouds themselves

and their persistent homology sensitive to amplitude redistribution effects.
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Figure 6.10: Persistence distributions in the infrared. Each column shows data for the
indicated filtration parameter, ν̄. The employed time-dependent scaling exponents are
displayed in Fig. 6.5.

6.6 Power-law in persistence

In Fig. 6.10 persistence distributions for different filtration parameters, ν̄, are displayed.

Again, fluctuations are due to statistical uncertainties. Distributions can be consistently

rescaled using time-dependent scaling exponents as in Fig. 6.5. To this end, we attribute

the observed physics to the inverse cascade. We want to emphasize that the persistence

distributions for a low filtration parameter such as ν̄ = 0.2 distinctly show power-law

behavior with persistence at all times, the corresponding persistence regime shrinking

with increasing filtration parameters. A power-law fit of the rescaled distributions reveals

a scaling with persistence as ∼ (rd − rb)−ζ with

ζ = 1.450± 0.027. (6.8)

The power-law fit is first carried out for persistence values between Q(rd−rb)min = 0.3125

and Q(rd−rb)max = 5.0 at each of the times Qti = 3750, 4375, . . . , 37500, individually, to

obtain values for ζ(ti) and its fitting error at time ti, ∆ζ(ti), i = 1, . . . , Ni. Subsequently,

the value of ζ is defined to be the average of the obtained exponents. Its error squared,

∆ζ2, is computed by means of standard error propagation as the sum of the temporal

error squared and the sum of all ∆ζ(ti)
2/N2

i .
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6.7 Betti numbers

In Sec. 5.4 we derived that if the asymptotic persistence pair distribution scales self-

similarly, then Betti number distributions do so as well in the way described by Eq.

(5.20). Having extracted scaling exponents from birth and death radii distributions in

Sec. 6.4, we investigate Betti number distributions as a consistency check.

In Fig. 6.11 Betti number distributions for both zero- and one-dimensional homology

classes are displayed. For all ν̄ and t, β̄0(t, r) is a monotonically decreasing function, since

zero-dimensional persistent homology classes are always born at zero radius and β̄0(t, r)

captures their death, that is, separated connection components in the alpha complexes

merging. We find a peak in unrescaled β̄1(t, r), which, again, decreases in magnitude and

shifts to higher radii as an indication of coarsening dynamics associated to the inverse

cascade.

Approximately, Betti numbers display self-similar scaling behavior. However, resid-

uals of the rescaled β̄0(t) increase at large radii and β̄1(t) shows comparably large fluc-

tuations. Nonetheless, rescaled Betti number distributions confirm previously extracted

exponents.
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Figure 6.11: Betti number distributions are shown for dimensions ` and filtration param-
eters ν̄ as indicated. Scaling exponents are set to the time-dependent values indicated in
the caption of Fig. 6.3, setting η′1 := η1.



Chapter 7

Further explorations

In this chapter we report about further explorations undertaken in the course of this work.

In particular, in Sec. 7.1 we discuss and present results for a more general approach to

the construction of point clouds via interlevel sets. In Sec. 7.2 we derive a computation

framework for relative homology groups and provide corresponding results, studying Betti

numbers modulo vortex nuclei subcomplexes. A discussion of the essential analysis of

experimental spinor Bose gas data [13], the first tries of which have been carried out in

the scope of this Master project, will be provided elsewhere in the near future.

The motivation for these investigations is primarily to separate anomalous vortex dy-

namics and its self-similar scaling behavior from the strong wave turbulence nonthermal

fixed point dynamics in a cleaner fashion compared to the indications found in Sec. 6.4

in factor of scaling species mixing.

7.1 Point clouds via interlevel sets

In this section we discuss the construction of point clouds as interlevel sets of the classical

field amplitudes. By means of an additional lower threshold for amplitudes the basic idea

is to cut out vortex nuclei and their surroundings, which by value typically have very small

amplitudes, from point clouds. The latter than comprise mainly points associated to bulk

fluctuations. However, it is certainly possible that the holes within point clouds around

vortex nuclei, that arise from a sharp lower cutoff in amplitudes, have a tremendous effect

on the dynamics visible in persistent homology observables.

7.1.1 The approach

As mentioned, we construct point clouds as interlevel sets of the amplitude. To this end,

let ν1, ν2 ∈ [0,∞) with ν1 ≤ ν2. Point clouds are defined as

Xν1,ν2(t) := |ψ(t, ·)|−1[ν1, ν2] = {x ∈ Λ | ν1 ≤ |ψ(t,x)| ≤ ν2}, (7.1)
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ψ : R × Λ → C being a single field configuration as it appears in classical-statistical

simulations of the nonrelativistic Bose gas. Given fixed ν1, ν2-values, we compute the

sequence of alpha complexes and study persistent homology observables hereof. Setting

ν1 = 0, we recover the approach taken in Chap. 6. Comparing outcomes for different

ν1, ν2, we may gain additional insights into the specific dynamics of the Bose gas.

Again, we provide values of ν1, ν2 in terms of the dimensionless quantities ν̄i, defined

as in Eq. (6.2). Throughout this section, simulation parameters are those denoted in

Sec. 6.1.1.

7.1.2 Numerical results

In Fig. 7.1 we display birth and death radii distributions for various interlevel set

parameters, ν̄1 and ν̄2. Based on the discussion in Sec. 6.3, using lower bounds of

ν̄1 = 0.2, 0.4, 0.5, 0.6, vortex nuclei and their surrounding have been cut out from the

corresponding point clouds, leaving behind associated holes in the point clouds. At the

indicated values of ν̄2 = 0.6, 0.7 point clouds comprise mainly points associated to bulk

fluctuations. To this end, the interlevel set filtration parameters chosen in Fig. 7.1 seems

ideal to investigate, whether cutting out vortex nuclei by means of a lower threshold

on amplitudes alters the self-similar scaling behavior, potentially such that solely known

strong wave turbulence results are visible.

Clearly, the data displayed in Fig. 7.1 reveals that persistent homology observables

of interlevel sets also show self-similar scaling, being successfully rescalable using per-

sistent homology scaling exponents as displayed in Fig. 7.2. All aspects of the shown

distributions have been discussed beforehand in Sec. 6.3, which is why we do not pro-

vide redundant information here. We note that altering the lower filtration parameter,

ν̄1, does not have a notable impact on corresponding point clouds. In addition, scaling

exponents are by values the same as extracted previously for sublevel sets of amplitudes,

cf. Fig. 6.5.

Thus, by means of interlevel sets, cutting out vortex nuclei, we see that the remaining

holes in point clouds around the latter also have an effect on the resulting persistent

homology observables. They are by value still larger than to be expected, if only strong

wave turbulence was present and driving the dynamics of point clouds. Following the

discussion of Sec. 6.4 and Ref. [4], we would at least for ν̄1 = 0.6, ν̄2 = 0.7 expect that

η1(ν̄1, ν̄2) ≈ 1/2. In addition, vortices are nonlocal excitations with their energy content

spread through the whole physical system, cf. Sec. 2.2.3. Hence, even aside from holes in

point clouds around their nuclei they might have a dynamical impact on the system. This

can also be a reason for that via interlevel sets we cannot clearly discriminate between the

strong wave turbulence scaling species and the anomalous vortex kinetics scaling species.

The increase in exponent values visible in Fig. 7.1 in particular for ν̄1 = 0.6, ν̄2 = 0.7
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Figure 7.1: Birth and death radii distributions from amplitude interlevel sets in the
infrared. First and second row: death radii of zero-dimensional homology classes, D̄0(t).
Third and fourth row: birth radii of one-dimensional homology classes, B̄1(t). Each
column shows data for the indicated filtration parameters, ν̄1 and ν̄2. The employed
time-dependent scaling exponents are displayed in Fig. 7.2. Purple to yellow: Results at
equidistant simulation times between Qt = 1875 and Qt = 6250.
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Figure 7.2: Persistent homology scaling exponents from amplitude interlevel sets for
different filtration parameters, ν̄1 and ν̄2, and fitting times, Qt.

is due to amplitude redistribution-induced exponent shifts as observable in Fig. 7.2 and

discussed in Sec. 6.5. Note that this effect plays a minor role for the interlevel sets

investigated here compared to the shifts visible in Fig. 7.2, since we investigate a smaller

range of times here, rendering the effect tinier.

7.2 Relative homology groups

Inspired by Ref. [33], this section is devoted to numerically exploring relative homology

groups and their Betti numbers in order to unravel and understand the spectrum of

scaling exponents observed and discussed in Sec. 6.4. The construction is motivated

similarly to the one of interlevel sets in the previous section. Solely, here we do not cut

out vortex nuclei and their surroundings, but try to understand homology groups modulo

the nuclei and their surroundings. By this means, we hope to eliminate the dynamical

dependence on the holes in the arising point clouds.

To cut a long story short, to date numerical investigations need to be considered too

preliminary to draw reliable conclusions. The required careful and detailed analysis lies

outside the scope of this master project and is postponed to the near future.

7.2.1 Computing relative homology Betti numbers

As constructed in Sec. 3.2.2, relative homology groups are defined for a nested pair

of simplicial complexes. In the following we define such a nested pair, tailored to dis-

criminate between the dynamics of vortices and that of bulk points. The setting is

the two-dimensional nonrelativistic Bose gas simulations introduced and investigated in

Chap. 6, though the construction is carried out here for an arbitrary spatial dimension,

d.

Let νvor > 0 be small, such that V := Xνvor(t) ⊂ Rd mainly comprises vortex nuclei

and points in their surroundings. Let ν > νvor be another filtration parameter, such that

point clouds Xν(t) also comprise bulk points to a significant extent. Let ε > 0 and r ≥ 0.
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We define the vortex subcomplex vε,r(X,V ) of the alpha complex of X := Xν(t) to the

radius r, αr(Xν(t)) , via

vε,r(X,V ) :=

{
[x1, . . . , x`+1] = σ ∈ αr(X)

∣∣∣∣∣ ∀ i : xi ∈
⋃
w∈V

Bε(w) ∩X, ` ∈ {0, . . . , d}
}
,

(7.2)

Bε(w) denoting the d-ball of radius ε around the point w. Indeed, we easily see that

vε,r(X,V ) is a simplicial subcomplex of αr(X). Physically speaking, if the points in X

lie sufficiently dense in the vicinities of vortex nuclei and inbetween, then vε,r(X,V ) will

be a good approximation of the vortex nuclei and their surroundings.

For fixed νvor, ε, t and again setting X := Xν(t), we define an altered version of the

Delaunay radius function Rad as defined in Sec. 3.1.2, namely R̃ad : Del(X)→ R set to

R̃ad(σ) :=

−1 if σ ∈ vε,r(X,V ),

Rad(σ) if σ /∈ vε,r(X,V ).
(7.3)

Using the map R̃ad, we define altered alpha complexes as sublevel sets of it,

α̃r(X) := R̃ad
−1

[−1, r], (7.4)

r taking now values in [−1,∞). Again, we find that they form a nested sequence of

simplicial complexes, implying the existence of an inclusion map ιr,s : α̃r(X) ↪→ α̃s(X)

for all s ≥ r. Thus, one can study persistent homology groups of the arising persistence

module, M := ((H∗(α̃r(X)))r, (ι
r,s
∗ )r≤s). The persistence diagram of M we denote by

D̃gm
(α)

` (X).

In fact, one can easily compute Betti numbers, β̃`(t, r), of the relative homology

groups of the nested pair of simplicial complexes, (αr(X), vε,r(X,V )), from M and the

persistence diagrams D̃gm
(α)

` (X),

β̃0(t, r) := card

{
(b, d) ∈ D̃gm

(α)

0 (X)

∣∣∣∣ 0 ≤ b ≤ r < d

}
, (7.5a)

β̃`(t, r) := card

{
(b, d) ∈ D̃gm

(α)

`−1(X)

∣∣∣∣ − 1 = b < d ≤ r
}

+ card

{
(b, d) ∈ D̃gm

(α)

` (X)

∣∣∣∣ 0 ≤ b ≤ r < d

}
, (7.5b)

for any ` ≥ 1. To understand these relations, one may first notice that in zero-dimensional

homology relative to the vortex subcomplex a persistent homology class for which a

representing cycle fully resides in the vortex subcomplex is excluded from the counting of

connection components, explaining Eq. (7.5a). The interpretation of Eq. (7.5b) proceeds
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similarly. Restrict to ` = 1. Loops in the altered alpha complexes can arise in two ways.

First, as in standard alpha complexes, explaining the second term in Eq. (7.5b). Second,

via a cycle that is contained in vε,r(X,V ) but dies at a radius larger than or equal to

zero, yielding the first contribution to β̃1(t, r) in Eq. (7.5b). This explanation similarly

applies in higher dimensions, ` > 1. The relative contribution to β̃`(t, r) corresponds to

homology classes that get born in the vortex subcomplex but whose interiors get filled

with simplices for which at least one of them lies outside the vortex subcomplex. If in this

case there was no simplex in the interior of a representing cycle of a relative homology

class that lies outside of the vortex subcomplex, in relative homology the cycle would

shrink to a point.

We want to stress that upon this procedure the bare persistence diagrams D̃gm
(α)

` (X)

cannot be interpreted as representing relative persistent homology classes, directly. By

means of Eqs. (7.5a) and (7.5b), it is only relative Betti numbers that can be reproduced

correctly.

Note that on the numerically implemented d = 2 lattice, which in the employed

topological analysis routine is assumed to be a square lattice with open boundaries, that

is, having zero homology groups across all dimensions, β̃2(t, r) is only made up from

contributions of the first term in Eq. (7.5b). This way, it is a monotonically increasing

function with r.

In Fig. 7.3 we display the 1-skeleta of vortex subcomplexes for ν̄vor = 0.2 and ν̄ = 0.6,

ν̄ = 0.7. Note that the more points are present in the bulk between vortices, the more

accurate the vortex subcomplexes describe the occurring accumulations of points around

nuclei.

7.2.2 Prospective numerics

Equations (7.5a) and (7.5b) provide a numerically amenable way to numerically compute

Betti numbers of homology groups relative to a vortex subcomplex. Manually setting

Delaunay radii of simplices in a vortex subcomplex to −1, we implemented a computation

procedure for the altered alpha complexes, α̃r(Xν(t)), and their persistent homology

groups. Eqs. (7.5a) and (7.5b) have been built in by hand in order to compute relative

Betti numbers.

In Fig. 7.4 we display relative Betti number distributions at different times for two

filtration parameters ν̄ = 0.6 and ν̄ = 0.7. The radius to construct vortex subcomplexes is

set fixed to Qε = 3.75. First, one may notice that while for ν̄ = 0.6 the time-dependence

of the displayed relative Betti numbers seems quite irregular, for ν̄ = 0.7 it appears much

smoother. Clearly, this provides evidence for that at a higher filtration parameter vortex

subcomplexes become less random structures and actually capture vortex nuclei better,

evoked through the higher number of bulk points in corresponding point clouds.
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Figure 7.3: 1-skeleta of vortex subcomplexes for ν̄vor = 0.2, Qε = 2.5, displayed in grey.
The black dots correspond to the point clouds Xν(t). Left panel: ν̄ = 0.6. Right panel:
ν̄ = 0.7.
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Figure 7.4: Relative Betti number distributions for homology classes of the indicated
dimensions ` = 0, 1, 2 and ν̄vor = 0.2, Qε = 3.75. Top row: ν̄ = 0.6. Bottom row:
ν̄ = 0.7. From purple to yellow: Equidistant times between Qt = 3750 and Qt = 6250.

The structure of zeroth Betti number distributions appears very irregular. Simi-

larly, the overall shape of β̃1(t, r) is hard to interpret. Focussing on ν̄ = 0.6, appearing

structures in the curves seem to significantly vary in time. This might indicate that

the infinite-volume limit is not reached properly, yet, at the investigated system size of

N = 1536. Increasing the filtration parameter, much more points enter the bulk between

the vortices, thus improving vortex subcomplexes in the sense that the become a better

proxy for vortex nuclei and their surroundings, cf. Fig. 7.3. For ν̄ = 0.7, β̃1(t, r) this

results in a much regular structure of the displayed curves. Nonetheless, upon comparing

these distributions at different times, even they seem not consistently rescalable. Second

relative Betti numbers display heavily irregular behavior across investigated times.

This leads us to the conclusion that in order to reliably draw conclusions from the

numerical results a much more thorough and detailed investigation is necessary, including,

for instance, a careful analysis of the dependence on the system volume. This lies outside

the scope of this work and is postponed to the near future.
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Conclusions

Inspired by topological data analysis techniques and their recent advances, in the present

work we investigated possible uses of the persistent homology machinery in the quan-

tum field-theoretic surrounding. We proposed a novel class of observables, persistent

homology observables, in order to globally detect occurring connectivity and clustering

structures, focussing here on the classical-statistical regime. Employing functional sum-

maries [68], a guiding principle in this proposal has been to carry out constructions on

the basis of mathematical theorems, which guarantee, for instance, that averages are

well-defined within the considered spaces of functional outcomes. Within the classical-

statistical approximation we provided a general computation scheme for expectation

values of persistent homology observables, inferring the existence of a corresponding

quantum field-theoretic operator. Containing different types of information on occur-

ring homological features, we defined various geometric quantities from a fairly general

integral kernel appearing, the asymptotic persistence pair distribution, see Eq. (5.5).

As a prototype application, in this work we considered the investigation of universal

structures far from equilibrium in the vicinity of nonthermal fixed points and their man-

ifestions in persistent homology observables. Of particular interest was the self-similar

dynamical behavior, encoded in a corresponding scaling approach to the asymptotic per-

sistence pair distribution, see Eq. (5.14). Comparing to notions of self-similarity across

the literature, where typically a respective scaling ansatz is made for correlation functions

in momentum space [4, 13, 85], our ansatz captures the geometric, essential meaning of

self-similarity more intuitively, providing a position space means of understanding contin-

uous “fractality”. A packing relation between scaling exponents appearing in the ansatz

revealed that the scaling behavior visible in the asymptotic persistence pair distribution

and derived geometric quantities is inherently linked to the geometry of the system at

hand, see Eq. (5.24). We provided both a simple heuristic argument in favor of the

relation, as well as a more rigorous deduction of the latter, demonstrating that it can be

based on a mathematical footing. Intuitively, the packing relation describes a bound on
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the number of homology classes of a given size, which can be wrapped into a constant

finite volume.

Serving as a numerical proof-of-principle, we studied persistent homology observables

at large length scales in classical-statistical lattice simulations of the two-dimensional

nonrelativistic Bose gas. Our approach to the study of persistent homology has been to

first construct point clouds as sublevel sets of amplitudes of individual classical-statistical

field realizations living on a spatial lattice and to then compute their sequence of alpha

complexes and the corresponding persistent homology groups. Confirming the existence

of a self-similarly scaling asymptotic persistence pair distribution, we numerically demon-

strated that, indeed, self-similarity in the vicinity of a nonthermal fixed point is a con-

cept that is not restricted to n-point correlation functions. To astonishing accuracy, the

packing relation could be confirmed. Crucially, for the scaling ansatz to the asymp-

totic persistence pair distribution to consistently describe the numerical data, filtration

parameter- and time-dependent scaling exponents have been necessary. Our work thus

showed for the first time the existence of a continuous spectrum of scaling exponents.

The two-dimensional nonrelativistic Bose gas exhibits different types of collective

phenomena leading to universal behavior far from equilibrium: strong wave turbulence

and anomalous vortex kinetics. Indications for both have been visible in previous studies

[4, 46]. In particular, the two have been shown to display different universal scaling

exponents. We conjecture that the occurring scaling exponent spectrum is a result of

mixing points in point clouds which can be loosely associated to the two different types

of dynamical components. Nonetheless, with regard to evidence for this mixing of scaling

species our findings have the drawback of merely providing indications for the presence of

strong wave turbulence by means of the growth of persistent homology scaling exponents,

explicitly showing only the presence of the anomalous vortex kinetics scaling behavior by

means of the distinct plateau visible in Fig. 6.5.

Further exploratory investigations carried out in this work, which still need to be con-

sidered preliminary, had the explicit goal to provide clear evidence for the simultaneous

presence of both strong wave turbulence and anomalous vortex kinetics. The study of

interlevel sets of the amplitudes of individual classical-statistical field realizations did not

lead to more transparent indications for the presence of strong wave turbulence and the

associated scaling behavior. Instead, persistent homology observables for the interlevel

sets displayed the very same dynamics as has been observed for sublevel sets. A second,

more intricate approach described in this work is to study homology groups relative to

vortex nuclei. Having constructed simplicial vortex subcomplexes, via a modified ver-

sion of the Delaunay radius function simple formulae for relative Betti numbers could

be given, making corresponding numerical investigations feasible. However, we revealed

that a thorough and detailed investigation of numerical results is required, unfortunately
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lying outside the scope of this work. Clearly, this proposal has the potential to clarify

the character of nonequilibrium universal behavior in the two-dimensional Bose gas.

With the present work we seeked to provide a first prototype study in favor of the us-

age of persistent homology observables in QFT. As has become clear in the course of this

work, dozens of possible future research trajectories deserve attention. Clearly, further

evidence for the phenomenon of scaling species mixing would be desirable. Methodolog-

ically, central to this work is the construction of point clouds via amplitude sublevel sets

of the complex-valued scalar fields, see Eq. (5.1). In fact, an immense freedom of choice

exists to generate point clouds from fields. For the example of the nonrelativistic Bose

gas, as a manifestation of the global U(1)-symmetry of the system persistent homology

results for phase interlevel sets should be invariant under global phase shifts. Is there

anything new to learn from using higher-order correlation functions on the level of indi-

vidual classical-statistical realizations to obtain point clouds? What can be learned from

other approaches to generate point clouds?

In recent years, universal aspects of nonequilibrium dynamics in isolated quantum

dynamics have been verified experimentally [13–15]. Would it be possible to find indica-

tions for self-similar scaling behavior of the asymptotic persistence pair distribution in

corresponding experimental data?

Studying correlation functions, extending from equal-time to unequal-time arguments

revealed novel characteristics of far-from-equilibrium dynamics [12,16,59]. Our approach

is based on the construction of equal-time point clouds, their equal-time alpha complexes

and equal-time persistent homology groups. Can we meaningfully extend this to unequal-

time alpha complexes, shifting dynamical aspects of persistent homology observables

more to the center? To accomplish this, appropriate simplicial complexes are required.

Various approaches are conceivable. A possibly physically natural family of simplicial

complexes is formed by the weighted alpha complexes [28], replacing the standard metric

on Euclidean space as it is used in the construction of alpha complexes by a more general

quantity, in which field-values and a Minkowski metric could be encoded. In principle,

one does not even need a lattice in order to construct point clouds. Even for fields living

on arbitrary smooth and triangulable manifolds, persistent homology groups could be

constructed, for instance, using singular homology of sublevel sets [82]. This opens up

countless possibilities for further studies.

In non-Abelian gauge theories, extended objects such as Wilson loops are of particular

importance. In addition, topological structures in gauge theories such as θ-vacua, various

anomalies and knot invariants have been extensively investigated [86,87]. Is it sensible to

extend the field of topological structures in gauge theories to include persistent homology

— what novelties do the persistence-related aspects hold ready? Is an approach to the

construction of point-clouds similar to the one provided in this work even possible in a



92 CHAPTER 8. CONCLUSIONS

gauge-invariant fashion?

In any case central to the approach presented in this work and to the further ex-

ploration of persistent homology observables in QFT is the existence of quantum field-

theoretic operators corresponding to persistent homology observables. In full generality,

is such a construction possible from local operators? Can the relation between gauge

and knot theory [88] or derivations of mathematical theorems linking local and global

quantities such as the Gauss-Bonnet theorem or the Atiyah-Singer index theorem provide

insights into this direction and be exploited?

Certainly, paths to illuminate also include analytic prediction for persistent homology

observables in a given QFT. Across the literature, different works may provide useful

starting points in this direction. Inter alia, for different types of random fields statistical

statements could be made [89, 90], and predictions for alpha complexes of a class of

random point clouds have been derived by means of integral geometry techniques [61].

In persistent homology theory the description of multidimensional persistence is cur-

rently of key interest and amply studied, though not easy to handle. Useful invariants

yielding a full classification of corresponding persistence modules do not exist [22,91,92].

In the present work we fixed a filtration parameter to generate point clouds and then

studied the one-parameter family of alpha complexes of different radii. Actually, this

forms a natural surrounding for a two-parameter filtration of complexes. Can corre-

sponding weak invariants such as the rank invariant [22] be employed meaningfully in

the given setting?

With the present work we believe to have found a promising machinery to understand

emergent homological structures far from equilibrium beyond the language of correlation

functions. Certainly, this work only provides a very first step on the route of introducing

persistent homology observables to QFT. Where does the interplay between these novel

geometric methods and quantum physics lead to?
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Appendix A

Numerical convergence of

persistent homology observables

In this appendix we provide results for how the different persistent homology observables

of interest in the main text converge with the number of classical-statistical samples, n,

increasing. We noted in Sec. 6.3 that depending on the filtration parameter ν̄ birth and

death radii distributions converge differently fast with n. Confirming this observation, in

Fig. A.1 we display birth and death radii distributions as well as persistence distributions

for two values of ν̄, at different times within the persistent homology observables’ self-

similar scaling regime and for different values of n. It is clearly visible that occurring

fluctuations decrease with n increasing.

In Fig. A.2 we display Betti numbers. In particular, β̄0 converged very well for n = 50.

β̄1 converges later with the number of samples taken into account, since distributions are

computed from fewer persistent homology classes with corresponding properties. Yet,

additional samples do not alter the overall shape of β̄1 anymore, solely reducing occurring

statistical fluctuations.

As observed in Sec. 6.5, the average maximum death radius, r̄d,max, is a quantity

that is very sensitive to particular geometric arrangements of points in analyzed point

clouds. Resembling this effect, in Fig. A.3 we display r̄d,max for different n. Clearly,

occurring oscillations drastically reduce with n increasing. Regions of approximate power-

law behavior certainly converged properly for n = 50 as studied in the main text.

To sum up, different persistent homology observables converge differently fast with the

number of classical-statistical samples, n, taken into account in averaging. Corresponding

differences among their convergence behavior can be easily understood geometrically.
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Figure A.1: Birth and death radii distributions and persistence distributions in the in-
frared varying with time, displayed for ν̄-values and numbers of classical-statistical sam-
ples to average, n, as indicated.
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Figure A.2: Betti number distributions in the infrared varying with time, displayed for
ν̄-values and numbers of classical-statistical samples to average, n, as indicated.
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Figure A.3: The average maximum death radius of 1-dimensional persistent homology
classes varying with time, displayed for ν̄-values and numbers of classical-statistical sam-
ples to average, n, as indicated.



Appendix B

Extracting scaling exponents

This appendix introduces extraction protocols for self-similar scaling exponents in a

twofold fashion. In Sec. B.1 we provide the procedure for correlation functions, in

Sec. B.2 we provide a similar procedure for persistent homology observables, making use

of both of them in the numerics carried out in the course of the present work.

B.1 Scaling exponents from correlation functions

In Sec. 6.2 we studied the self-similar evolution of the occupation number spectrum

f(t,p), that is, of a particular type of two-point correlation function. Central to this

analysis is the extraction of correlation function scaling exponents. Our procedure is the

same as the one used in Ref. [4]. We cite the most important aspects of it here.

First, the occupation number spectrum f(t,p) is rescaled according to the self-similar

scaling ansatz,

fresc(t,p) = (t/t′)−αf(t, (t/t′)−βp). (B.1)

The occupation number spectrum at Ncom times within the self-similar scaling regime is

compared to an earliest reference time t′, chosen to be the time at which the self-similar

scaling evolution begins, approximately. We quantify deviations from a perfect rescaling

by means of

∆f(t,p) = fresc(t,p)− f(t′,p), (B.2)

χ2(α, β) =
1

Ncom

Ncom∑
k=1

∫
d(log(p))(∆f(tk,p)/f(t′,p))2∫

d(log(p))
, (B.3)

borrowing notation from Ref. [4].

χ2(α, β) is minimized for the best-fitting pair of exponents (ᾱ, β̄). We define a likeli-
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hood function by means of

W (α, β) =
1

N exp

(
− χ2(α, β)

2χ2(ᾱ, β̄)

)
, (B.4)

N being a normalization constant defined by
∫
dα dβW = 1. Fitting marginal likelihood

functions such as W (α) =
∫
dβW (α, β) with Gaussian distributions, we estimate stan-

dard deviations such as σα for the best-fitting pair of scaling exponents. The final pair

of extracted scaling exponents is given by

α = ᾱ± σα, β = β̄ ± σβ. (B.5)

B.2 Scaling exponents from persistent homology

Key to the analysis of results in our nonrelativistic Bose gas testbed in Chap. 6 is

the extraction of persistent homology scaling exponents from approximately self-similar

birth and death radii distributions. This appendix serves as a description of the applied

protocol to accomplish this task, similar in spirit to the protocol employed to extract

correlation function scaling exponents.

We first define rescaled variants of the birth and death radii distributions,

B̄ resc
` (t, rb) = (t/t′)η2−η

′
1B̄`(t, (t/t′)−η1rb), (B.6a)

D̄ resc
` (t, rd) = (t/t′)η2−η1D̄`(t, (t/t′)−η

′
1rd). (B.6b)

Distributions at later times are compared with those at the reference time t′, chosen to

be the time at which the self-similar evolution sets in. However, we could equally well

have chosen any other reference time within the self-similar scaling regime. Denote by

tk > t′, k = 1, . . . , Ncom, all corresponding comparison times. If birth and death radii

distributions were evolving perfectly self-similar according to Eqs. (5.6a) and (5.6b), we

would find

∆B̄`(t, rb) = B̄ resc
` (t, rb)− B̄`(t′, rb) = 0, (B.7a)

∆D̄`(t, rd) = D̄ resc
` (t, rd)− D̄`(t′, rd) = 0. (B.7b)

Numerically, even for the correct triple of exponents (η1, η
′
1, η2) this is only approximately

true due to statistical uncertainties as well as systematic errors entering since systems

typically only enter the vicinity of a nonthermal fixed point. We optimize scaling expo-
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nents by means of minimizing occurring deviations, quantified by

χ2(η1, η
′
1, η2) = χ2

b(η1, η
′
1, η2) + χ2

d(η1, η
′
1, η2), (B.8a)

χ2
b(η1, η

′
1, η2) =

1

Ncom

Ncom∑
k=1

∫ rmax

rmin
drb ∆B̄`(tk, rb)2∫ rmax

rmin
drb B̄`(t′, rb)2

, (B.8b)

χ2
d(η1, η

′
1, η2) =

1

Ncom

Ncom∑
k=1

∫ rmax

rmin
drd ∆D̄`(tk, rd)2∫ rmax

rmin
drd D̄`(t′, rd)2

. (B.8c)

Lower and upper limits of integration in the appearing expressions depend on whether the

infrared or, for instance, the ultraviolet cascade is investigated, setting for the infrared

cascade Qrmin = 1.5 and Qrmax = 25.0 for all ν̄ ≤ 0.7 and Qrmin = 1.0 and Qrmax = 10.0

for ν̄ = 0.8. A priori, the given expressions for χ2
b/d(η1, η

′
1, η2), are equally sensitive to the

behavior at all scales of radii, increasing the weight of data points whose deviations are

large. Linear interpolations are employed to obtain birth and death radii distributions

at rescaled birth and death radii, respectively.

Minimizing deviations as measured by χ2(η1, η
′
1, η2), the optimal triple (η̃1, η̃

′
1, η̃2) is

obtained. Analogously to Refs. [3, 4], a likelihood function is defined as

W (η1, η
′
1, η2) =

1

N exp

(
− χ2(η1, η

′
1, η2)

2χ2(η̃1, η̃′1, η̃2)

)
, (B.9)

N being a normalization constant such that∫
dη1 dη

′
1 dη2W (η1, η

′
1, η2) = 1. (B.10)

Marginal likelihood functions are obtained upon integrating over two of the exponents,

for instance,

W (η1) =

∫
dη′1 dη2W (η1, η

′
1, η2). (B.11)

We fit marginal likelihood functions with Gaussian distributions to estimate correspond-

ing standard deviations, ση1 , ση′1 and ση2 , the means still being given by η̃1, η̃
′
1 and η̃2.

To derive time-dependent persistent homology scaling exponents, we apply the de-

scribed fitting procedure with a fixed reference time Qt′ for Ncom = 3 times, simulta-

neously: Qtmin as indicated in the main text as well as Qtmin + 625 and Qtmin + 1250.

Repeating this procedure for different Qtmin, we obtain time-dependent scaling expo-

nents.
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[12] K. Boguslavski and A. Piñeiro Orioli, “Unraveling the nature of universal dynamics

in O(N) theories,” 2019.

[13] M. Prüfer, P. Kunkel, H. Strobel, S. Lannig, D. Linnemann, C.-M. Schmied,

J. Berges, T. Gasenzer, and M. K. Oberthaler, “Observation of universal dynamics

in a spinor Bose gas far from equilibrium,” Nature, vol. 563, no. 7730, pp. 217–220,

2018.
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